Nothing
# Need generic version for column-parallel apply and aggregating weights..
fsum_uw <- function(x, g, w, ...) fsum(x, g, ...)
fprod_uw <- function(x, g, w, ...) fprod(x, g, ...)
fmean_uw <- function(x, g, w, ...) fmean(x, g, ...)
fmedian_uw <- function(x, g, w, ...) fmedian(x, g, ...)
fvar_uw <- function(x, g, w, ...) fvar(x, g, ...)
fsd_uw <- function(x, g, w, ...) fsd(x, g, ...)
fmode_uw <- function(x, g, w, ...) fmode(x, g, ...)
fnth_uw <- function(x, n, g, w, ...) fnth(x, n, g, ...)
fmin_uw <- function(x, g, w, ...) fmin(x, g, ...)
fmax_uw <- function(x, g, w, ...) fmax(x, g, ...)
ffirst_uw <- function(x, g, w, ...) ffirst(x, g, ...)
flast_uw <- function(x, g, w, ...) flast(x, g, ...)
fnobs_uw <- function(x, g, w, ...) fnobs(x, g, ...)
fndistinct_uw <- function(x, g, w, ...) fndistinct(x, g, ...)
fNobs_uw <- function(x, g, w, ...) fnobs(x, g, ...)
fNdistinct_uw <- function(x, g, w, ...) fndistinct(x, g, ...)
mymatchfun <- function(FUN) {
if(is.function(FUN)) return(FUN)
switch(tochar(FUN),
# cat(paste0(FSF, " = ", FSF, ",\n"))
fmean = fmean,
fmedian = fmedian,
fmode = fmode,
fsum = fsum,
fprod = fprod,
fsd = fsd,
fvar = fvar,
fmin = fmin,
fmax = fmax,
fnth = fnth,
ffirst = ffirst,
flast = flast,
fnobs = fnobs,
fndistinct = fndistinct,
fNobs = fnobs,
fNdistinct = fndistinct,
# cat(paste0(paste0(FSF, "_uw"), " = ", paste0(FSF, "_uw"), ",\n"))
fmean_uw = fmean_uw,
fmedian_uw = fmedian_uw,
fmode_uw = fmode_uw,
fsum_uw = fsum_uw,
fprod_uw = fprod_uw,
fsd_uw = fsd_uw,
fvar_uw = fvar_uw,
fmin_uw = fmin_uw,
fmax_uw = fmax_uw,
fnth_uw = fnth_uw,
ffirst_uw = ffirst_uw,
flast_uw = flast_uw,
fnobs_uw = fnobs_uw,
fndistinct_uw = fndistinct_uw,
fNobs_uw = fnobs_uw,
fNdistinct_uw = fndistinct_uw,
match.fun(FUN)) # get(FUN, mode = "function", envir = parent.frame(2)) -> no error message
}
# Column-level parallel implementation
applyfuns_internal <- function(data, by, FUN, fFUN, parallel, cores, ...) {
oldClass(data) <- "data.frame" # Needed for correct method dispatch for fast functions...
if(length(FUN) > 1L) {
if(parallel) return(lapply(seq_along(FUN), function(i)
if(fFUN[i]) mclapply(data, FUN[[i]], g = by, ..., use.g.names = FALSE, mc.cores = cores) else
BY.data.frame(data, by, FUN[[i]], ..., use.g.names = FALSE, reorder = FALSE, return = "data.frame", parallel = parallel, mc.cores = cores))) # mclapply(data, copysplaplfun, by, FUN[[i]], ..., mc.cores = cores)
return(lapply(seq_along(FUN), function(i)
if(fFUN[i]) FUN[[i]](data, g = by, ..., use.g.names = FALSE) else
BY.data.frame(data, by, FUN[[i]], ..., use.g.names = FALSE, reorder = FALSE, return = "data.frame"))) # lapply(data, copysplaplfun, by, FUN[[i]], ...)
}
if(is.list(FUN)) FUN <- FUN[[1L]]
if(parallel) if(fFUN) return(list(mclapply(data, FUN, g = by, ..., use.g.names = FALSE, mc.cores = cores))) else
return(list(BY.data.frame(data, by, FUN, ..., use.g.names = FALSE, reorder = FALSE, return = "data.frame", parallel = parallel, mc.cores = cores))) # return(list(mclapply(data, copysplaplfun, by, FUN, ..., mc.cores = cores)))
if(fFUN) return(list(FUN(data, g = by, ..., use.g.names = FALSE)))
return(list(BY.data.frame(data, by, FUN, ..., use.g.names = FALSE, reorder = FALSE, return = "data.frame"))) # return(list(lapply(data, copysplaplfun, by, FUN, ...)))
}
rbindlist_factor <- function(l, idcol = "Function") {
nam <- names(l)
names(l) <- NULL
res <- .Call(C_rbindlist, l, TRUE, TRUE, idcol)
attr(res[[1L]], "levels") <- if (length(nam)) nam else as.character(seq_along(l))
oldClass(res[[1L]]) <- "factor"
res
}
# NOTE: CUSTOM SEPARATOR doesn't work because of unlist() !
# keep.w toggle w being kept even if passed externally ? -> Also not done with W, B , etc !! -> but they also don't keep by ..
collap <- function(X, by, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum, custom = NULL,
...,
keep.by = TRUE, keep.w = TRUE, keep.col.order = TRUE, sort = .op[["sort"]], decreasing = FALSE,
na.last = TRUE, return.order = sort, method = "auto", parallel = FALSE, mc.cores = 2L,
return = c("wide","list","long","long_dupl"), give.names = "auto") {
return <- switch(return[1L], wide = 1L, list = 2L, long = 3L, long_dupl = 4L, stop("Unknown return output option"))
widel <- return == 1L
ncustoml <- is.null(custom)
autorn <- is.character(give.names) && give.names == "auto"
nwl <- is.null(w)
if(inherits(X, "data.frame")) DTl <- inherits(X, "data.table") else {
X <- qDF(X)
DTl <- FALSE
}
ax <- attributes(X)
oldClass(X) <- NULL
if(.Call(C_fnrow, X) == 0L) stop("data passed to collap() has 0 rows.") #160, 0 rows can cause segfault...
nam <- names(X)
# attributes(X) <- NULL
# attr(X, "class") <- "data.frame" # class needed for method dispatch of fast functions, not for BY !
# cl <- if(parallel) makeCluster(mc.cores) else NULL
# aplyfun <- if(parallel) function(...) mclapply(..., mc.cores = mc.cores) else lapply
# identifying by and cols
vl <- TRUE
bycalll <- is.call(by)
if(bycalll) {
if(length(by) == 3L) {
v <- ckmatch(all.vars(by[[2L]]), nam)
numby <- ckmatch(all.vars(by[[3L]]), nam)
} else {
numby <- ckmatch(all.vars(by), nam)
if(ncustoml) v <- if(is.null(cols)) seq_along(X)[-numby] else cols2int(cols, X, nam)
}
by <- GRP.default(X, numby, sort, decreasing, na.last, keep.by, return.order, method, call = FALSE)
} else if(is.atomic(by)) {
numby <- 1L
if(ncustoml) if(is.null(cols)) vl <- FALSE else v <- cols2int(cols, X, nam)
by <- GRP.default(`names<-`(list(by), l1orlst(as.character(substitute(by)))), NULL, sort, decreasing, na.last, keep.by, return.order, method, call = FALSE)
} else {
if(ncustoml) if(is.null(cols)) vl <- FALSE else v <- cols2int(cols, X, nam)
if(!is_GRP(by)) {
numby <- seq_along(unclass(by))
by <- GRP.default(by, numby, sort, decreasing, na.last, keep.by, return.order, method, call = FALSE)
} else numby <- seq_along(by[[5L]])
}
if(!nwl) {
if(is.call(w)) {
namw <- all.vars(w)
numw <- ckmatch(namw, nam)
if(vl && ncustoml) v <- fsetdiff(v, numw) # v[v != numw]
w <- eval(w[[2L]], X, attr(w, ".Environment")) # w <- X[[numw]]
} else if(keep.w) {
numw <- 0L # length(X) + 1L
namw <- l1orlst(as.character(substitute(w)))
}
if(keep.w) { # what about function name for give.names ? What about give.names and custom ?
wFUN <- acr_get_funs(substitute(wFUN), wFUN, mymatchfun)
namwFUN <- wFUN$namfun
wFUN <- wFUN$funs
if(!all(names(wFUN) %in% .FAST_STAT_FUN_EXT)) stop("wFUN needs to be fast statistical functions, see print(.FAST_STAT_FUN)")
if(length(wFUN) > 1L) {
namw <- paste(namwFUN, namw, sep = ".")
by[[4L]] <- c(if(keep.by) by[[4L]], `names<-`(lapply(wFUN, function(f) f(w, g = by, ..., use.g.names = FALSE)), namw))
if(keep.col.order) numby <- c(if(keep.by) numby, rep_len(numw, length(wFUN)))
} else {
wFUN <- wFUN[[1L]]
if(isTRUE(give.names)) namw <- paste(namwFUN, namw, sep = ".")
by[[4L]] <- c(if(keep.by) by[[4L]], `names<-`(list(wFUN(w, g = by, ..., use.g.names = FALSE)), namw))
if(keep.col.order) numby <- c(if(keep.by) numby, numw) # need to accommodate any option of keep.by, keep.w and keep.col.order
}
keep.by <- TRUE
}
}
if(ncustoml) {
# Identifying data
nu <- .Call(C_vtypes, X, 1L) # vapply(unattrib(X), is.numeric, TRUE)
if(vl) {
temp <- nu[v]
nnu <- v[!temp] # which(!nu & v) # faster way ?
nu <- v[temp] # which(nu & v)
rm(temp, v)
} else {
nnu <- whichv(nu, FALSE)
nu <- which(nu)
}
nul <- length(nu) > 0L
nnul <- length(nnu) > 0L
# Identifying FUN and catFUN:
if(nul) {
FUN <- acr_get_funs(substitute(FUN), FUN, mymatchfun)
namFUN <- FUN$namfun
FUN <- FUN$funs
}
if(nnul) {
catFUN <- acr_get_funs(substitute(catFUN), catFUN, mymatchfun)
namcatFUN <- catFUN$namfun
catFUN <- catFUN$funs
}
if(autorn) give.names <- !widel || length(FUN) > 1L || length(catFUN) > 1L
# Aggregator function # drop level of nesting i.e. make rest length(by)+length(FUN)+length(catFUN) ?
agg <- function(xnu, xnnu, ...) { # by, FUN, namFUN, catFUN, namcatFUN, drop.by
lr <- nul + nnul + keep.by
res <- vector("list", lr)
if(keep.by) {
res[[1L]] <- list(by[[4L]]) # could add later using "c" ?
ind <- 2L
} else ind <- 1L
if(nul) res[[ind]] <- condsetn(applyfuns_internal(xnu, by, FUN, names(FUN) %in% .FAST_STAT_FUN_EXT,
parallel, mc.cores, ...), namFUN, give.names)
if(nnul) res[[lr]] <- condsetn(applyfuns_internal(xnnu, by, catFUN, names(catFUN) %in% .FAST_STAT_FUN_EXT,
parallel, mc.cores, ...), namcatFUN, give.names)
return(res)
} # fastest using res list ?? or better combine at the end ??
# Fixes https://github.com/SebKrantz/collapse/issues/185
if(widel && !give.names && ((length(nu) == 1L && !nnul && length(FUN) > 1L) || (length(nnu) == 1L && !nul && length(catFUN) > 1L))) {
names(X) <- NULL
give.names <- TRUE
}
if(nwl) {
res <- agg(if(nul) X[nu] else NULL,
if(nnul) X[nnu] else NULL, ...)
} else {
res <- agg(if(nul) X[nu] else NULL,
if(nnul) X[nnu] else NULL, w = w, ...)
}
if(keep.col.order && widel) o <- forder.int(c(if(!keep.by) NULL else if(!bycalll) rep(0L,length(numby)) else numby,
if(nul) rep(nu,length(FUN)) else NULL,
if(nnul) rep(nnu,length(catFUN)) else NULL))
} else { # custom aggregation:
namFUN <- names(custom)
if(!is.list(custom) || is.null(namFUN)) stop("custom needs to be a named list, see ?collap")
fFUN <- namFUN %in% .FAST_STAT_FUN_EXT
if(!keep.by) {
res <- vector("list", 1L)
ind <- 1L
} else {
res <- vector("list", 2L)
res[[1L]] <- list(by[[4L]]) # could add later using "c" ?
ind <- 2L
}
custom_names <- lapply(custom, names)
custom <- lapply(custom, cols2int, X, nam) # could integrate below, but then reorder doesn't work !
# if(autorn) give.names <- fanyDuplicated(unlist(custom, FALSE, FALSE))
#lx <- length(X)
# custom <- lapply(custom, function(x) if(is.numeric(x) && bmax(abs(x)) <= lx)
# x else if(is.character(x)) ckmatch(x, nam) else
# stop("custom list content must be variable names or suitable column indices"))
if(nwl) {
res[[ind]] <- lapply(seq_along(namFUN), function(i)
applyfuns_internal(setnck(X[custom[[i]]], custom_names[[i]]), by, mymatchfun(namFUN[i]),
fFUN[i], parallel, mc.cores, ...)[[1L]])
} else {
if(!all(fFUN)) warning("collap can only perform weighted aggregations with the fast statistical functions (see .FAST_STAT_FUN): Ignoring weights argument to other functions")
res[[ind]] <- lapply(seq_along(namFUN), function(i)
applyfuns_internal(setnck(X[custom[[i]]], custom_names[[i]]), by, mymatchfun(namFUN[i]),
fFUN[i], parallel, mc.cores, w = w, ...)[[1L]])
}
# Better to do this check afterwards, because custom names may make column names unique...
if(autorn && widel) give.names <- fanyDuplicated(unlist(lapply(res[[ind]], attr, "names"), FALSE, FALSE))
if(!widel || give.names) names(res[[ind]]) <- namFUN
if(keep.col.order && return != 2L) { # && widel
o <- unlist(custom, use.names = FALSE)
o <- forder.int(c(if(!keep.by) NULL else if(!bycalll) rep(0L,length(numby)) else numby, if(widel) o else unique.default(o)))
}
}
# if(parallel) stopCluster(cl)
if(widel) res <- unlist(unlist(res, FALSE), FALSE) else {
# if(length(FUN) > 1L || length(catFUN) > 1L || length(custom) > 1L) {
res <- unlist(res, FALSE)
if(return == 2L) {
ax[["row.names"]] <- .set_row_names(by[[1L]])
if(!keep.by) return(lapply(res, function(e) {
ax[["names"]] <- names(e)
condalcSA(e, ax, DTl) }))
namby <- attr(res[[1L]], "names") # always works ??
return(lapply(res[-1L], function(e) {
ax[["names"]] <- c(namby, names(e))
condalcSA(c(res[[1L]], e), ax, DTl) }))
} else {
if(return != 4L) {
if(keep.by) res <- lapply(res[-1L], function(e) c(res[[1L]], e))
} else {
if(!ncustoml || !(nul && nnul)) stop("long_dupl is only meaningful for aggregations with both numeric and categorical data, and multiple functions used for only one of the two data types!")
mFUN <- length(FUN) > 1L
nid <- if(mFUN) length(res) else 2L-!keep.by
if(!keep.by) {
res <- if(mFUN) lapply(res[-nid], function(e) c(e, res[[nid]])) else
lapply(res[-nid], function(e) c(res[[nid]], e))
} else res <- if(mFUN) lapply(res[-c(nid, 1L)], function(e) c(res[[1L]], e, res[[nid]])) else
lapply(res[-c(nid, 1L)], function(e) c(res[[1L]], res[[nid]], e))
}
res <- rbindlist_factor(res)
if(keep.col.order) o <- if(ncustoml) forder.int(c(0L, if(!keep.by) NULL else if(!bycalll) rep(0L,length(numby)) else numby, nu, nnu)) else c(1L, o + 1L)
}
# } else message("return options other than 'wide' are only meaningful if multiple functions are used!")
}
if(keep.col.order) .Call(C_setcolorder, res, o) # data.table:::Csetcolorder
ax[["names"]] <- names(res)
ax[["row.names"]] <- .set_row_names(.Call(C_fnrow, res))
return(condalcSA(res, ax, DTl))
}
# collapv: allows vector input to by and w
collapv <- function(X, by, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum, custom = NULL, ...,
keep.by = TRUE, keep.w = TRUE, keep.col.order = TRUE, sort = .op[["sort"]], decreasing = FALSE,
na.last = TRUE, return.order = sort, method = "auto", parallel = FALSE, mc.cores = 2L,
return = c("wide","list","long","long_dupl"), give.names = "auto") {
return <- switch(return[1L], wide = 1L, list = 2L, long = 3L, long_dupl = 4L, stop("Unknown return output option"))
widel <- return == 1L
ncustoml <- is.null(custom)
autorn <- is.character(give.names) && give.names == "auto"
nwl <- is.null(w)
if(inherits(X, "data.frame")) DTl <- inherits(X, "data.table") else {
X <- qDF(X)
DTl <- FALSE
}
ax <- attributes(X)
oldClass(X) <- NULL
if(.Call(C_fnrow, X) == 0L) stop("data passed to collapv() has 0 rows.") #160, 0 rows can cause segfault...
nam <- names(X)
aplyfun <- if(parallel) function(...) mclapply(..., mc.cores = mc.cores) else lapply
# identifying by
numby <- cols2int(by, X, nam)
by <- GRP.default(X, numby, sort, decreasing, na.last, keep.by, return.order, method, call = FALSE)
if(ncustoml) v <- if(is.null(cols)) seq_along(X)[-numby] else cols2int(cols, X, nam)
if(!nwl) {
if(length(w) == 1L) {
numw <- cols2int(w, X, nam)
namw <- nam[numw]
if(ncustoml) v <- v[v != numw]
w <- X[[numw]]
} else if(keep.w) {
numw <- 0L
namw <- l1orlst(as.character(substitute(w)))
}
if(keep.w) {
wFUN <- acr_get_funs(substitute(wFUN), wFUN, mymatchfun)
namwFUN <- wFUN$namfun
wFUN <- wFUN$funs
if(!all(names(wFUN) %in% .FAST_STAT_FUN_EXT)) stop("wFUN needs to be fast statistical functions, see print(.FAST_STAT_FUN)")
if(length(wFUN) > 1L) {
namw <- paste(namwFUN, namw, sep = ".")
by[[4L]] <- c(if(keep.by) by[[4L]], `names<-`(lapply(wFUN, function(f) f(w, g = by, ..., use.g.names = FALSE)), namw))
if(keep.col.order) numby <- c(if(keep.by) numby, rep_len(numw, length(wFUN)))
} else {
wFUN <- wFUN[[1L]]
if(isTRUE(give.names)) namw <- paste(namwFUN, namw, sep = ".")
by[[4L]] <- c(if(keep.by) by[[4L]], `names<-`(list(wFUN(w, g = by, ..., use.g.names = FALSE)), namw))
if(keep.col.order) numby <- c(if(keep.by) numby, numw) # need to accommodate any option of keep.by, keep.w and keep.col.order
}
keep.by <- TRUE
}
}
if(ncustoml) {
# Identifying data
nu <- .Call(C_vtypes, X, 1L) # vapply(unattrib(X), is.numeric, TRUE)
temp <- nu[v]
nnu <- v[!temp] # which(!nu & v) # faster way ?
nu <- v[temp] # which(nu & v)
rm(temp, v)
nul <- length(nu) > 0L
nnul <- length(nnu) > 0L
# Identifying FUN and catFUN:
if(nul) {
FUN <- acr_get_funs(substitute(FUN), FUN, mymatchfun)
namFUN <- FUN$namfun
FUN <- FUN$funs
}
if(nnul) {
catFUN <- acr_get_funs(substitute(catFUN), catFUN, mymatchfun)
namcatFUN <- catFUN$namfun
catFUN <- catFUN$funs
}
if(autorn) give.names <- !widel || length(FUN) > 1L || length(catFUN) > 1L
# Aggregator function
agg <- function(xnu, xnnu, ...) {
lr <- nul + nnul + keep.by
res <- vector("list", lr)
if(keep.by) {
res[[1L]] <- list(by[[4L]])
ind <- 2L
} else ind <- 1L
if(nul) res[[ind]] <- condsetn(applyfuns_internal(xnu, by, FUN, names(FUN) %in% .FAST_STAT_FUN_EXT,
parallel, mc.cores, ...), namFUN, give.names)
if(nnul) res[[lr]] <- condsetn(applyfuns_internal(xnnu, by, catFUN, names(catFUN) %in% .FAST_STAT_FUN_EXT,
parallel, mc.cores, ...), namcatFUN, give.names)
return(res)
}
# Fixes https://github.com/SebKrantz/collapse/issues/185
if(widel && !give.names && ((length(nu) == 1L && !nnul && length(FUN) > 1L) || (length(nnu) == 1L && !nul && length(catFUN) > 1L))) {
names(X) <- NULL
give.names <- TRUE
}
if(nwl) {
res <- agg(if(nul) X[nu] else NULL,
if(nnul) X[nnu] else NULL, ...)
} else {
res <- agg(if(nul) X[nu] else NULL,
if(nnul) X[nnu] else NULL, w = w, ...)
}
if(keep.col.order && widel) o <- forder.int(c(if(!keep.by) NULL else numby,
if(nul) rep(nu,length(FUN)) else NULL,
if(nnul) rep(nnu,length(catFUN)) else NULL))
} else { # custom aggregation:
namFUN <- names(custom)
if(!is.list(custom) || is.null(namFUN)) stop("custom needs to be a named list, see ?collap")
fFUN <- namFUN %in% .FAST_STAT_FUN_EXT
if(!keep.by) {
res <- vector("list", 1L)
ind <- 1L
} else {
res <- vector("list", 2L)
res[[1L]] <- list(by[[4L]])
ind <- 2L
}
custom_names <- lapply(custom, names)
custom <- lapply(custom, cols2int, X, nam)
if(nwl) {
res[[ind]] <- lapply(seq_along(namFUN), function(i)
applyfuns_internal(setnck(X[custom[[i]]], custom_names[[i]]), by, mymatchfun(namFUN[i]),
fFUN[i], parallel, mc.cores, ...)[[1L]])
} else {
if(!all(fFUN)) warning("collap can only perform weighted aggregations with the fast statistical functions (see .FAST_STAT_FUN): Ignoring weights argument to other functions")
res[[ind]] <- lapply(seq_along(namFUN), function(i)
applyfuns_internal(setnck(X[custom[[i]]], custom_names[[i]]), by, mymatchfun(namFUN[i]),
fFUN[i], parallel, mc.cores, w = w, ...)[[1L]])
}
# Better to do this check afterwards, because custom names may make column names unique...
if(autorn && widel) give.names <- fanyDuplicated(unlist(lapply(res[[ind]], attr, "names"), FALSE, FALSE))
if(!widel || give.names) names(res[[ind]]) <- namFUN
if(keep.col.order && return != 2L) {
o <- unlist(custom, use.names = FALSE)
o <- forder.int(c(if(!keep.by) NULL else numby, if(widel) o else unique.default(o)))
}
}
if(widel) res <- unlist(unlist(res, FALSE), FALSE) else {
# if(length(FUN) > 1L || length(catFUN) > 1L || length(custom) > 1L) {
res <- unlist(res, FALSE)
if(return == 2L) {
ax[["row.names"]] <- .set_row_names(by[[1L]])
if(!keep.by) return(lapply(res, function(e) {
ax[["names"]] <- names(e)
condalcSA(e, ax, DTl) }))
namby <- attr(res[[1L]], "names") # always works ??
return(lapply(res[-1L], function(e) {
ax[["names"]] <- c(namby, names(e))
condalcSA(c(res[[1L]], e), ax, DTl) }))
} else {
if(return != 4L) {
if(keep.by) res <- lapply(res[-1L], function(e) c(res[[1L]], e))
} else {
if(!ncustoml || !(nul && nnul)) stop("long_dupl is only meaningful for aggregations with both numeric and categorical data, and multiple functions used for only one of the two data types!")
mFUN <- length(FUN) > 1L
nid <- if(mFUN) length(res) else 2L-!keep.by
if(!keep.by) {
res <- if(mFUN) lapply(res[-nid], function(e) c(e, res[[nid]])) else
lapply(res[-nid], function(e) c(res[[nid]], e))
} else res <- if(mFUN) lapply(res[-c(nid, 1L)], function(e) c(res[[1L]], e, res[[nid]])) else
lapply(res[-c(nid, 1L)], function(e) c(res[[1L]], res[[nid]], e))
}
res <- rbindlist_factor(res)
if(keep.col.order) o <- if(ncustoml) forder.int(c(0L, if(!keep.by) NULL else numby, nu, nnu)) else c(1L, o + 1L)
}
# } else message("return options other than 'wide' are only meaningful if multiple functions are used!")
}
if(keep.col.order) .Call(C_setcolorder, res, o) # data.table:::Csetcolorder
ax[["names"]] <- names(res)
ax[["row.names"]] <- .set_row_names(.Call(C_fnrow, res))
return(condalcSA(res, ax, DTl))
}
# For dplyr integration: takes grouped_df as input
collapg <- function(X, FUN = fmean, catFUN = fmode, cols = NULL, w = NULL, wFUN = fsum, custom = NULL,
keep.group_vars = TRUE, ...) {
by <- GRP.grouped_df(X, return.groups = keep.group_vars, call = FALSE)
if(is.null(by[[4L]])) keep.group_vars <- FALSE
if(is.null(custom)) ngn <- attr(X, "names") %!in% by[[5L]] # Note: this always leaves grouping columns on the left still !
# clx <- oldClass(X)
attr(X, "groups") <- NULL
oldClass(X) <- fsetdiff(oldClass(X), c("GRP_df", "grouped_df")) # clx[clx != "grouped_df"]
wsym <- substitute(w)
if(!is.null(wsym)) { # Non-standard evaluation of w argument
if(any(windl <- attr(X, "names") %in% all.vars(wsym))) {
wchar <- if(length(wsym) == 1L) as.character(wsym) else deparse(wsym)
assign(wchar, eval(wsym, X, parent.frame())) # needs to be here !! (before subsetting!!)
if(is.null(custom)) X <- fcolsubset(X, ngn & !windl) # else X <- X # Needed ?? -> nope !!
expr <- substitute(collap(X, by, FUN, catFUN, cols, w, wFUN, custom, ...,
keep.by = keep.group_vars,
sort = TRUE,
decreasing = FALSE,
na.last = TRUE,
return.order = TRUE,
method = "auto"))
expr[[7L]] <- as.symbol(wchar) # best solution !!
return(eval(expr))
}
}
if(is.null(custom)) X <- fcolsubset(X, ngn) # else X <- X # because of non-standard eval.. X is "."
return(eval(substitute(collap(X, by, FUN, catFUN, cols, w, wFUN, custom, ...,
keep.by = keep.group_vars,
sort = TRUE,
decreasing = FALSE,
na.last = TRUE,
return.order = TRUE,
method = "auto"))))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.