knitr::opts_chunk$set( collapse = TRUE, comment = "#>", dpi = 80 )
This vignette demonstrates how to visualize and interpret the output of ColocBoost results.
library(colocboost)
Causal variants (simulated)
The dataset features two causal variants with indices 194 and 589.
# Loading the Dataset data(Ind_5traits) # Run colocboost res <- colocboost(X = Ind_5traits$X, Y = Ind_5traits$Y)
The default plot of the colocboost results provides a visual representation of the colocalization events.
colocboost_plot(res)
Parameters to adjust plot
plot_cols = 2
(default) indicates the number of columns in the plot.y = "log10p"
(default) with optional y = "z_original"
for z-scoresy = "vcp"
for variant colocalization probabilities (single plot for all variants),y = "coef"
for regression coefficients estimated from the ColocBoost model.y = "cos_vcp"
for variant colocalization probabilities (multiple plots for each CoS - only draw VCP for variants in CoS to the colocalized traits).plot_cos_idx = NULL
(default) indicates all colocalization events are plotted. plot_cos_idx = 1
can be specified to plot the 1st colocalization event, and so on.outcome_idx = NULL
(default) indicates only the traits with colocalization are plotted. outcome_idx = c(1,2,5)
can be specified to plot the traits 1, 2, and 5.plot_all_outcome = FALSE
(default) indicates only the traits with colocalization are plotted. If TRUE
, it will plot all traits.cos_color = NULL
(default) indicates the colors of the colocalization events. Specify a vector of colors to customize the plot.There are several advanced options available for customizing the plot by deepening the visualization of the colocboost results.
You can specify a zoom-in region by providing a grange
argument, which is a vector indicating the indices of the region to be zoomed in.
colocboost_plot(res, grange = c(1:400))
You can highlight the top variants in the plot by setting show_top_variables = TRUE
. This will add a red circle to top variants with highest VCP for each CoS.
colocboost_plot(res, show_top_variables = TRUE)
There are three options available for plotting the CoS variants to uncolocalized traits:
show_cos_to_uncoloc = FALSE
(default), if TRUE
will plot all CoS variants to all uncolocalized traits.show_cos_to_uncoloc_idx = NULL
(default), if specified, will plot the specified CoS variants to all uncolocalized traits.show_cos_to_uncoloc_outcome = NULL
(default), if specified, will plot the all CoS variants to the specified uncolocalized traits.colocboost_plot(res, show_cos_to_uncoloc = TRUE)
You can add a vertical line to the plot by setting add_vertical = TRUE
and add_vertical_idx = **
. This will add a vertical line at the specified index.
For example, to add a vertical line at true causal variants, you can set add_vertical_idx = unique(unlist(Ind_5traits$true_effect_variants))
.
Following plot also shows the top variants.
colocboost_plot( res, show_top_variables = TRUE, add_vertical = TRUE, add_vertical_idx = unique(unlist(Ind_5traits$true_effect_variants)) )
There are two options available for plotting the trait-specific (uncolocalized) variants:
plot_ucos = FALSE
(default), if TRUE
will plot all trait-specific (uncolocalized) sets.plot_ucos_idx = NULL
(default) indicates all confidence sets are plotted. plot_ucos_idx = 1
can be specified to plot the 1st uncolocalized confidence sets, and so on.Important Note: You should use colocboost(..., output_level = 2)
to obtain the trait-specific (uncolocalized) information.
# Create a mixed dataset data(Ind_5traits) data(Heterogeneous_Effect) X <- Ind_5traits$X[1:3] Y <- Ind_5traits$Y[1:3] X1 <- Heterogeneous_Effect$X Y1 <- Heterogeneous_Effect$Y[,1,drop=F] # Run colocboost res <- colocboost(X = c(X, list(X1)), Y = c(Y, list(Y1)), output_level = 2) colocboost_plot(res, plot_ucos = TRUE)
In this example, there are two colocalized sets (blue and orange) and two trait-specific sets for trait 4 only (green and purple). For comprehensive tutorials on result interpretation, please visit our tutorials portal at Interpret ColocBoost Output.
There are three options available for plotting the results from disease prioritized colocalization, considering a focal trait:
plot_focal_only = FALSE
(default), if TRUE
will only plot CoS with focal trait and ignoring other CoS.plot_focal_cos_outcome_only = FALSE
(default) and recommend for visualization for disease prioritized colocalization.
If TRUE
will plot all CoS colocalized with at least on traits within CoS of focal traits.# Create a mixed dataset data(Ind_5traits) data(Sumstat_5traits) X <- Ind_5traits$X[1:3] Y <- Ind_5traits$Y[1:3] sumstat <- Sumstat_5traits$sumstat[4] LD <- get_cormat(Ind_5traits$X[[1]]) # Run colocboost res <- colocboost(X = X, Y = Y, sumstat = sumstat, LD = LD, focal_outcome_idx = 4) # Only plot CoS with focal trait colocboost_plot(res, plot_focal_only = TRUE) # Plot all CoS including at least one traits colocalized with focal trait colocboost_plot(res, plot_focal_cos_outcome_only = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.