View source: R/colocboost_output.R
get_cos_purity | R Documentation |
Calculate purity statistics between all pairs of colocalization confidence sets (CoS)
get_cos_purity(cos, X = NULL, Xcorr = NULL, n_purity = 100)
cos |
List of variables in CoS |
X |
Genotype matrix of values of the p variables. Used to compute correlations if Xcorr is not provided. |
Xcorr |
Correlation matrix of correlations between variables. Alternative to X. |
n_purity |
The maximum number of CoS variables used in calculating the correlation (“purity”) statistics. When the number of variables included in the CoS is greater than this number, the CoS variables are randomly subsampled. |
A list containing three matrices (min_abs_cor, max_abs_cor, median_abs_cor) with purity statistics for all pairs of CoS. Diagonal elements represent within-CoS purity.
Other colocboost_utilities:
get_cormat()
,
get_cos()
,
get_cos_summary()
,
get_hierarchical_clusters()
,
get_ucos_summary()
# colocboost example
set.seed(1)
N <- 1000
P <- 100
# Generate X with LD structure
sigma <- 0.9^abs(outer(1:P, 1:P, "-"))
X <- MASS::mvrnorm(N, rep(0, P), sigma)
colnames(X) <- paste0("SNP", 1:P)
L <- 3
true_beta <- matrix(0, P, L)
true_beta[10, 1] <- 0.5
true_beta[10, 2] <- 0.4
true_beta[50, 2] <- 0.3
true_beta[80, 3] <- 0.6
Y <- matrix(0, N, L)
for (l in 1:L) {
Y[, l] <- X %*% true_beta[, l] + rnorm(N, 0, 1)
}
res <- colocboost(X = X, Y = Y)
cos_res <- get_cos(res, coverage = 0.8)
get_cos_purity(cos_res$cos, X = X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.