caModel | R Documentation |
Function caModel estimates parameters of conjoint analysis model for one respondent. Function caModel returns vector of estimated parameters of traditional conjoint analysis model.
caModel(y, x)
y |
vector of preferences, vector should be like single profil of preferences |
x |
matrix of profiles |
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
Conjoint
#Example 1
library(conjoint)
data(tea)
model=caModel(tprefm[1,], tprof)
print(model)
#Example 2
library(conjoint)
data(chocolate)
model=caModel(cprefm[1,], cprof)
print(model)
#Example 3
library(conjoint)
data(journey)
model=caModel(jpref[306,], jprof)
print(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.