Description Usage Arguments Author(s) References Examples
View source: R/caSegmentation.R
Function caSegmentation divides respondents on n clusters (segments) using k-means method (function kmeans, package stats). There are two data sets used - matrix or vector of preferences and matrix of profiles.
1 | caSegmentation(y, x, c)
|
y |
matrix of preferences |
x |
matrix of profiles |
c |
number of clusters (optional), default value c=2 |
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/conjoint
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #Example 1
library(conjoint)
require(fpc)
data(tea)
segments<-caSegmentation(tprefm,tprof)
print(segments$seg)
plotcluster(segments$util,segments$sclu)
#Example 2
library(conjoint)
require(fpc)
data(tea)
segments<-caSegmentation(tpref,tprof,3)
print(segments$seg)
plotcluster(segments$util,segments$sclu)
#example 3
library(conjoint)
require(fpc)
require(broom)
require(ggplot2)
data(tea)
segments<-caSegmentation(tprefm,tprof,3)
dcf<-discrcoord(segments$util,segments$sclu)
assignments<-augment(segments$segm,dcf$proj[,1:2])
ggplot(assignments)+geom_point(aes(x=X1,y=X2,color= .cluster))+labs(color="Cluster Assignment",
title="K-Means Clustering Results")
#Example 4
library(conjoint)
require(ggfortify)
data(tea)
segments<-caSegmentation(tpref,tprof,3)
print(segments$seg)
util<-as.data.frame(segments$util)
set.seed(123)
ggplot2::autoplot(kmeans(util,3),data=util,label=TRUE,label.size=4,frame=TRUE)
#Example 5
#library(conjoint)
#require(ggfortify)
#require(cluster)
#data(tea)
#segments<-caSegmentation(tpref,tprof,3)
#print(segments$seg)
#util<-as.data.frame(segments$util)
#ggplot2::autoplot(pam(util,3),label=TRUE,label.size=4,frame=TRUE,frame.type='norm')
|
Loading required package: fpc
K-means clustering with 2 clusters of sizes 53, 47
Cluster means:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
1 3.761302 5.725226 4.419566 5.961302 5.151642 3.632189 4.364264 3.177226
2 5.585766 2.854915 1.327255 4.317681 2.637894 3.885362 1.923660 1.707766
[,9] [,10] [,11] [,12] [,13]
1 2.494208 2.9163962 5.999868 6.5642642 6.209547
2 3.082234 0.6331702 3.341809 0.6555745 1.153447
Clustering vector:
[1] 2 1 1 1 1 2 1 2 1 1 1 1 2 2 2 2 1 2 1 2 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 1 1
[38] 2 2 2 2 1 2 1 2 1 1 2 2 2 1 2 2 2 1 1 2 1 2 1 2 2 1 1 1 1 2 2 2 1 1 2 2 1
[75] 1 1 1 2 1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 2 1 2 2 1 1
Within cluster sum of squares by cluster:
[1] 4044.186 2442.875
(between_SS / total_SS = 30.0 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
K-means clustering with 3 clusters of sizes 28, 32, 40
Cluster means:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
1 3.608429 5.280036 5.180036 4.372714 4.272893 5.084571 5.227429 5.870571
2 4.426031 5.382906 3.026656 6.713531 6.201656 2.544812 3.751062 1.426625
3 5.480275 2.938100 1.368100 4.540275 1.973100 3.782900 1.382900 0.965750
[,9] [,10] [,11] [,12] [,13]
1 3.856286 5.2851429 4.720571 5.991714 5.106000
2 1.757875 0.9967187 6.401625 6.038562 6.644812
3 2.820750 0.1112250 3.450750 0.442900 0.692900
Clustering vector:
[1] 2 1 2 1 1 3 2 1 2 2 2 2 3 3 3 3 1 3 1 3 3 2 3 1 2 2 1 2 1 1 3 2 1 2 2 2 2
[38] 3 3 3 3 1 3 1 3 2 2 3 3 3 2 3 3 3 1 2 3 1 3 1 3 3 2 1 1 2 3 3 3 1 2 3 2 1
[75] 2 1 1 3 2 2 1 2 1 2 3 3 3 3 1 3 1 3 1 3 3 2 3 1 2 2
Within cluster sum of squares by cluster:
[1] 1949.076 1903.595 1605.654
(between_SS / total_SS = 41.1 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
Loading required package: broom
Loading required package: ggplot2
Loading required package: ggfortify
K-means clustering with 3 clusters of sizes 28, 32, 40
Cluster means:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
1 3.608429 5.280036 5.180036 4.372714 4.272893 5.084571 5.227429 5.870571
2 4.426031 5.382906 3.026656 6.713531 6.201656 2.544812 3.751062 1.426625
3 5.480275 2.938100 1.368100 4.540275 1.973100 3.782900 1.382900 0.965750
[,9] [,10] [,11] [,12] [,13]
1 3.856286 5.2851429 4.720571 5.991714 5.106000
2 1.757875 0.9967187 6.401625 6.038562 6.644812
3 2.820750 0.1112250 3.450750 0.442900 0.692900
Clustering vector:
[1] 2 1 2 1 1 3 2 1 2 2 2 2 3 3 3 3 1 3 1 3 3 2 3 1 2 2 1 2 1 1 3 2 1 2 2 2 2
[38] 3 3 3 3 1 3 1 3 2 2 3 3 3 2 3 3 3 1 2 3 1 3 1 3 3 2 1 1 2 3 3 3 1 2 3 2 1
[75] 2 1 1 3 2 2 1 2 1 2 3 3 3 3 1 3 1 3 1 3 3 2 3 1 2 2
Within cluster sum of squares by cluster:
[1] 1949.076 1903.595 1605.654
(between_SS / total_SS = 41.1 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.