caPartUtilities: Function caPartUtilities calculates matrix of individual...

Description Usage Arguments Author(s) References See Also Examples

View source: R/caPartUtilities.R

Description

Function caPartUtilities calculates matrix of individual utilities for respondents. Function returns matrix of partial utilities (parameters of conjoint model regresion) for all artificial variables including parameters for reference levels for respondents (with intercept on first place).

Usage

1
caPartUtilities(y, x, z)

Arguments

y

matrix of preferences

x

matrix of profiles

z

vector of levels names

Author(s)

Andrzej Bak andrzej.bak@ue.wroc.pl,

Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl

Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/conjoint

References

Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.

Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.

Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.

SPSS 6.1 Categories (1994), SPSS Inc., Chicago.

See Also

caUtilities, caTotalUtilities and ShowAllUtilities

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
#Example 1
library(conjoint)
data(tea)
uslall<-caPartUtilities(tprefm,tprof,tlevn)
print(uslall)

#Example 2
library(conjoint)
data(chocolate)
uslall<-caPartUtilities(cprefm,cprof,clevn)
print(head(uslall))

#Example 3
library(conjoint)
data(journey)
usl<-caPartUtilities(jpref[1,],jprof,jlevn)
print("Individual (partial) utilities for first respondent:")
print(usl)

Example output

       intercept    low medium   high  black  green    red   bags granulated
  [1,]     3.394 -1.517 -1.141  2.659 -0.475 -0.675  1.149  0.659     -1.517
  [2,]     5.049  3.391 -0.695 -2.695 -1.029  0.971  0.057  1.105     -0.609
  [3,]     4.029  2.563 -1.182 -1.382 -0.248  2.352 -2.103 -0.382     -2.437
  [4,]     5.856 -1.149 -0.025  1.175 -0.492  1.308 -0.816 -0.825     -0.149
  [5,]     6.250 -2.333  2.567 -0.233 -0.033 -0.633  0.667 -0.233     -0.333
  [6,]     1.578 -0.713 -0.144  0.856  1.456 -0.744 -0.713  0.656     -0.713
  [7,]     2.635 -0.920 -1.040  1.960 -0.707  0.293  0.414 -1.107     -2.586
  [8,]     4.405 -0.425  0.413  0.013  0.546 -2.454  1.908  1.479      0.241
  [9,]     3.546 -0.966  0.883  0.083  2.216  1.416 -3.632 -0.917     -0.966
 [10,]     5.460  0.678 -0.639 -0.039  0.228  0.428 -0.655 -1.172     -2.655
 [11,]     5.626  0.678 -0.239 -0.439  0.228  0.428 -0.655 -1.439     -2.322
 [12,]     5.566  0.862 -0.631 -0.231  0.502  0.302 -0.805 -0.898     -2.805
 [13,]     1.319  0.552  0.424 -0.976  0.691 -0.909  0.218 -0.243     -1.115
 [14,]     1.925 -0.264 -0.568  0.832  1.499 -1.901  0.402  0.099     -0.598
 [15,]     1.776 -0.793 -0.103  0.897  3.697 -1.903 -1.793  1.097      0.207
 [16,]     2.296 -0.632 -0.284  0.916  3.383 -1.417 -1.966  0.983      0.034
 [17,]     4.506  1.379  0.510 -1.890 -1.090 -0.290  1.379  0.377      0.046
 [18,]     1.075 -0.402 -0.699  1.101  0.968 -0.232 -0.736  1.101     -0.402
 [19,]     3.486 -1.115  0.757  0.357 -0.976  2.424 -1.448 -0.376      0.552
 [20,]     1.736  0.218 -0.609  0.391  3.124 -1.676 -1.448  0.591     -0.782
 [21,]     2.236  0.885 -1.343  0.457 -0.143  1.257 -1.115  1.591     -1.782
 [22,]     4.874  1.655 -1.628 -0.028  0.506  0.506 -1.011  0.772     -2.345
 [23,]     0.256  0.379  0.010 -0.390  0.544 -0.256 -0.287 -0.056     -0.287
 [24,]     3.664 -1.690  0.245  1.445 -3.622  0.978  2.644 -0.289     -2.023
 [25,]     3.006  1.713 -0.156 -1.556 -0.623  3.577 -2.954  0.177     -0.954
 [26,]     3.394 -1.517 -1.141  2.659 -0.475 -0.675  1.149  0.659     -1.517
 [27,]     5.049  3.391 -0.695 -2.695 -1.029  0.971  0.057  1.105     -0.609
 [28,]     2.239  1.575  0.013 -1.587 -1.454  3.546 -2.092  0.346     -1.092
 [29,]     5.856 -1.149 -0.025  1.175 -0.492  1.308 -0.816 -0.825     -0.149
 [30,]     6.250 -2.333  2.567 -0.233 -0.033 -0.633  0.667 -0.233     -0.333
 [31,]     1.578 -0.713 -0.144  0.856  1.456 -0.744 -0.713  0.656     -0.713
 [32,]     2.635 -0.920 -1.040  1.960 -0.707  0.293  0.414 -1.107     -2.586
 [33,]     4.405 -0.425  0.413  0.013  0.546 -2.454  1.908  1.479      0.241
 [34,]     3.546 -0.966  0.883  0.083  2.216  1.416 -3.632 -0.917     -0.966
 [35,]     5.388  1.103 -0.652 -0.452  0.548  0.348 -0.897 -1.252     -2.897
 [36,]     5.810  0.483 -0.441 -0.041  0.559 -0.041 -0.517 -1.041     -2.517
 [37,]     5.681  0.782 -0.491 -0.291  0.443  0.443 -0.885 -1.224     -2.552
 [38,]     1.572  0.575  0.613 -1.187  0.879 -1.121  0.241 -0.321     -0.759
 [39,]     1.925 -0.264 -0.568  0.832  1.499 -1.901  0.402  0.099     -0.598
 [40,]     1.621 -0.701 -0.349  1.051  3.451 -1.749 -1.701  1.251      0.299
 [41,]     2.365 -0.747 -0.226  0.974  2.907 -1.493 -1.414  1.174      0.253
 [42,]     4.506  1.379  0.510 -1.890 -1.090 -0.290  1.379  0.377      0.046
 [43,]     1.822  1.241 -1.021 -0.221  2.779 -1.021 -1.759  1.313     -1.425
 [44,]     3.486 -1.115  0.757  0.357 -0.976  2.424 -1.448 -0.376      0.552
 [45,]     2.112  0.563 -0.482 -0.082  3.185 -1.415 -1.770  0.852     -1.103
 [46,]     3.931  0.782 -0.991  0.209  0.276  0.276 -0.552  0.543     -1.885
 [47,]     4.874  1.655 -1.628 -0.028  0.506  0.506 -1.011  0.772     -2.345
 [48,]     2.417  1.333  0.833 -2.167  3.967 -1.633 -2.333  0.433     -1.667
 [49,]     3.420 -1.310  1.255  0.055  0.455 -1.145  0.690 -0.478      0.356
 [50,]     2.210  0.345  0.328 -0.672  0.461 -0.139 -0.322 -0.272     -0.655
 [51,]     2.437  0.161  0.320 -0.480  0.253  0.253 -0.506 -1.547     -1.506
 [52,]     2.948 -0.414 -0.193  0.607  1.674 -1.926  0.253  0.340     -0.080
 [53,]     3.224  1.793 -1.097 -0.697  1.370  1.170 -2.540  1.637     -0.874
 [54,]     2.721 -0.230  0.215  0.015  1.682 -1.118 -0.563  0.615     -0.230
 [55,]     4.520 -0.506  0.753 -0.247  0.020 -0.180  0.161 -0.780     -0.839
 [56,]     3.534  1.943 -0.071 -1.871  0.662  1.062 -1.724 -1.005     -1.391
 [57,]     2.598  0.782  0.409 -1.191  1.476 -0.924 -0.552  0.876     -1.552
 [58,]     5.250  0.000 -0.500  0.500  2.167  2.167 -4.333 -0.967      1.333
 [59,]     3.652 -0.782 -0.109  0.891 -0.576  0.024  0.552  0.424     -0.448
 [60,]     4.052  1.747 -0.874 -0.874 -3.340  2.260  1.080  0.593     -0.586
 [61,]     3.109  2.207 -1.103 -1.103  1.030  1.430 -2.460  1.630     -1.460
 [62,]     2.336  0.690  0.155 -0.845  0.422  1.222 -1.644  0.489      0.023
 [63,]     3.046 -0.966  0.483  0.483 -0.584  0.216  0.368 -1.117     -0.966
 [64,]     4.118  0.276 -0.438  0.162 -1.305  0.695  0.609  0.295     -0.391
 [65,]     4.833  1.000  0.200 -1.200  0.800  0.200 -1.000  0.867     -0.333
 [66,]     3.103  0.161  0.320 -0.480  0.253  0.253 -0.506 -1.214     -1.172
 [67,]     2.983 -0.471 -0.264  0.736  1.602 -1.798  0.195  0.269     -0.138
 [68,]     3.451  1.276 -0.838 -0.438  1.495  0.895 -2.391  1.562     -0.724
 [69,]     3.055 -0.230  0.215  0.015  2.348 -1.452 -0.897  0.615     -0.230
 [70,]     4.520 -0.506  0.753 -0.247  0.020 -0.180  0.161 -0.780     -0.839
 [71,]     4.428  1.759 -0.079 -1.679  0.587  0.987 -1.575 -0.879     -1.241
 [72,]     1.759  0.069  0.366 -0.434  2.899 -1.301 -1.598 -0.368     -0.264
 [73,]     3.394 -1.517 -1.141  2.659 -0.475 -0.675  1.149  0.659     -1.517
 [74,]     5.049  3.391 -0.695 -2.695 -1.029  0.971  0.057  1.105     -0.609
 [75,]     4.029  2.563 -1.182 -1.382 -0.248  2.352 -2.103 -0.382     -2.437
 [76,]     5.856 -1.149 -0.025  1.175 -0.492  1.308 -0.816 -0.825     -0.149
 [77,]     6.250 -2.333  2.567 -0.233 -0.033 -0.633  0.667 -0.233     -0.333
 [78,]     1.578 -0.713 -0.144  0.856  1.456 -0.744 -0.713  0.656     -0.713
 [79,]     3.302 -0.920 -0.840  1.760 -0.707  0.293  0.414 -0.974     -2.253
 [80,]     3.394 -1.517 -1.141  2.659 -0.475 -0.675  1.149  0.659     -1.517
 [81,]     5.049  3.391 -0.695 -2.695 -1.029  0.971  0.057  1.105     -0.609
 [82,]     3.089  1.379  0.010 -1.390 -1.323  3.277 -1.954  0.277     -0.954
 [83,]     5.856 -1.149 -0.025  1.175 -0.492  1.308 -0.816 -0.825     -0.149
 [84,]     5.388  1.103 -0.652 -0.452  0.548  0.348 -0.897 -1.252     -2.897
 [85,]     1.572  0.575  0.613 -1.187  0.879 -1.121  0.241 -0.321     -0.759
 [86,]     1.925 -0.264 -0.568  0.832  1.499 -1.901  0.402  0.099     -0.598
 [87,]     3.261 -0.241 -0.479  0.721  2.921 -1.679 -1.241  1.254      0.092
 [88,]     2.365 -0.747 -0.226  0.974  2.907 -1.493 -1.414  1.174      0.253
 [89,]     4.506  1.379  0.510 -1.890 -1.090 -0.290  1.379  0.377      0.046
 [90,]     2.411  1.287 -0.944 -0.344  2.456 -0.744 -1.713  1.323     -1.046
 [91,]     5.437  1.494  0.453 -1.947 -0.947 -0.547  1.494  0.520      0.161
 [92,]     2.135 -0.586  0.293  0.293  1.426 -0.174 -1.253  0.626     -0.253
 [93,]     3.486 -1.115  0.757  0.357 -0.976  2.424 -1.448 -0.376      0.552
 [94,]     2.701  0.609 -0.205 -0.405  3.195 -0.805 -2.391  0.329     -0.057
 [95,]     2.236  0.885 -1.343  0.457 -0.143  1.257 -1.115  1.591     -1.782
 [96,]     4.641  1.793 -1.397 -0.397  0.537  0.337 -0.874  0.203     -2.207
 [97,]     2.853  1.161  0.220 -1.380  4.620 -1.780 -2.839  0.020     -0.839
 [98,]     4.626  0.011  0.494 -0.506  0.561 -2.239  1.678  1.494      0.011
 [99,]     3.767 -0.529  0.564 -0.036  2.231  1.631 -3.862 -0.702     -1.195
[100,]     5.868  0.943 -0.671 -0.271  0.729  0.329 -1.057 -1.205     -2.391
        leafy    yes     no
  [1,]  0.859  0.629 -0.629
  [2,] -0.495 -0.681  0.681
  [3,]  2.818  0.776 -0.776
  [4,]  0.975  0.121 -0.121
  [5,]  0.567 -1.250  1.250
  [6,]  0.056  1.595 -1.595
  [7,]  3.693  0.147 -0.147
  [8,] -1.721 -1.060  1.060
  [9,]  1.883 -0.259  0.259
 [10,]  3.828  1.414 -1.414
 [11,]  3.761  0.914 -0.914
 [12,]  3.702  1.284 -1.284
 [13,]  1.357 -0.388  0.388
 [14,]  0.499  0.983 -0.983
 [15,] -1.303 -0.052  0.052
 [16,] -1.017 -0.009  0.009
 [17,] -0.423 -0.345  0.345
 [18,] -0.699  1.017 -1.017
 [19,] -0.176  0.112 -0.112
 [20,]  0.191  0.862 -0.862
 [21,]  0.191  1.362 -1.362
 [22,]  1.572  1.586 -1.586
 [23,]  0.344 -0.095  0.095
 [24,]  2.311 -1.078  1.078
 [25,]  0.777  0.155 -0.155
 [26,]  0.859  0.629 -0.629
 [27,] -0.495 -0.681  0.681
 [28,]  0.746  0.440 -0.440
 [29,]  0.975  0.121 -0.121
 [30,]  0.567 -1.250  1.250
 [31,]  0.056  1.595 -1.595
 [32,]  3.693  0.147 -0.147
 [33,] -1.721 -1.060  1.060
 [34,]  1.883 -0.259  0.259
 [35,]  4.148  1.474 -1.474
 [36,]  3.559  0.879 -0.879
 [37,]  3.776  1.388 -1.388
 [38,]  1.079 -0.560  0.560
 [39,]  0.499  0.983 -0.983
 [40,] -1.549 -0.241  0.241
 [41,] -1.426 -0.147  0.147
 [42,] -0.423 -0.345  0.345
 [43,]  0.113  0.190 -0.190
 [44,] -0.176  0.112 -0.112
 [45,]  0.252  1.026 -1.026
 [46,]  1.343  2.138 -2.138
 [47,]  1.572  1.586 -1.586
 [48,]  1.233  0.250 -0.250
 [49,]  0.122  2.328 -2.328
 [50,]  0.928  0.664 -0.664
 [51,]  3.053 -0.207  0.207
 [52,] -0.260  0.603 -0.603
 [53,] -0.763  2.052 -2.052
 [54,] -0.385  0.474 -0.474
 [55,]  1.620  0.043 -0.043
 [56,]  2.395 -0.569  0.569
 [57,]  0.676  1.138 -1.138
 [58,] -0.367 -0.250  0.250
 [59,]  0.024  1.612 -1.612
 [60,] -0.007  0.397 -0.397
 [61,] -0.170  0.948 -0.948
 [62,] -0.511  1.078 -1.078
 [63,]  2.083  0.241 -0.241
 [64,]  0.095  1.181 -1.181
 [65,] -0.533  1.500 -1.500
 [66,]  2.386 -0.207  0.207
 [67,] -0.131  0.534 -0.534
 [68,] -0.838  2.181 -2.181
 [69,] -0.385  0.474 -0.474
 [70,]  1.620  0.043 -0.043
 [71,]  2.121 -0.440  0.440
 [72,]  0.632  0.483 -0.483
 [73,]  0.859  0.629 -0.629
 [74,] -0.495 -0.681  0.681
 [75,]  2.818  0.776 -0.776
 [76,]  0.975  0.121 -0.121
 [77,]  0.567 -1.250  1.250
 [78,]  0.056  1.595 -1.595
 [79,]  3.226  0.147 -0.147
 [80,]  0.859  0.629 -0.629
 [81,] -0.495 -0.681  0.681
 [82,]  0.677  0.405 -0.405
 [83,]  0.975  0.121 -0.121
 [84,]  4.148  1.474 -1.474
 [85,]  1.079 -0.560  0.560
 [86,]  0.499  0.983 -0.983
 [87,] -1.346  0.060 -0.060
 [88,] -1.426 -0.147  0.147
 [89,] -0.423 -0.345  0.345
 [90,] -0.277  0.095 -0.095
 [91,] -0.680 -0.207  0.207
 [92,] -0.374  1.647 -1.647
 [93,] -0.176  0.112 -0.112
 [94,] -0.271  0.931 -0.931
 [95,]  0.191  1.362 -1.362
 [96,]  2.003  1.302 -1.302
 [97,]  0.820  0.043 -0.043
 [98,] -1.506 -1.086  1.086
 [99,]  1.898 -0.284  0.284
[100,]  3.595  1.431 -1.431
     intercept  milk walnut delicaties  dark    low average   high paperback
[1,]     8.583  2.00  -2.00       6.00 -6.00  0.000  -0.250  0.250     0.000
[2,]     8.500  0.00  -2.75       0.50  2.25 -2.667   0.333  2.333     0.500
[3,]     8.625 -6.00   2.00      -2.00  6.00 -0.667  -0.167  0.833     0.375
[4,]     8.208 -2.00   0.25      -1.75  3.50  2.333   0.333 -2.667    -0.750
[5,]     8.833 -1.75   0.75      -4.50  5.50 -1.333  -0.583  1.917     0.375
[6,]     8.292 -2.25  -2.50       5.25 -0.50  0.500   0.875 -1.375    -0.375
     hardback  light middle  heavy little   much
[1,]    0.000 -0.333 -0.083  0.417 -1.000  1.000
[2,]   -0.500  2.667 -1.083 -1.583  0.250 -0.250
[3,]   -0.375  0.167  0.042 -0.208 -0.375  0.375
[4,]    0.750 -1.167  2.458 -1.292  0.125 -0.125
[5,]   -0.375  0.000  1.500 -1.500 -0.750  0.750
[6,]    0.375  0.333  0.333 -0.667  0.625 -0.625
[1] "Individual (partial) utilities for first respondent:"
     intercept cognitive vacation health business organized   own summer winter
[1,]     4.938    -0.937   -2.687  3.639   -0.014    -1.562 1.562  0.692 -0.692
     1-2-3 star_hotel 4-5 star_hotel guesthouse hostel
[1,]            0.063          1.639      0.313 -2.014

conjoint documentation built on May 1, 2019, 8:05 p.m.