View source: R/caPartUtilities.R
caPartUtilities | R Documentation |
Function caPartUtilities calculates matrix of individual utilities for respondents. Function returns matrix of partial utilities (parameters of conjoint model regresion) for all artificial variables including parameters for reference levels for respondents (with intercept on first place).
caPartUtilities(y, x, z)
y |
matrix of preferences |
x |
matrix of profiles |
z |
vector of levels names |
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
caUtilities
, caTotalUtilities
and ShowAllUtilities
#Example 1
library(conjoint)
data(tea)
uslall<-caPartUtilities(tprefm,tprof,tlevn)
print(uslall)
#Example 2
library(conjoint)
data(chocolate)
uslall<-caPartUtilities(cprefm,cprof,clevn)
print(head(uslall))
#Example 3
library(conjoint)
data(journey)
usl<-caPartUtilities(jpref[1,],jprof,jlevn)
print("Individual (partial) utilities for first respondent:")
print(usl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.