Nothing
## ----include=FALSE------------------------------------------------------------
library(ctsmTMB)
library(ggplot2)
## ----eval=FALSE---------------------------------------------------------------
# model$simulate(data,
# pars = NULL,
# use.cpp = FALSE,
# method = "ekf",
# ode.solver = "rk4",
# ode.timestep = diff(data$t),
# simulation.timestep = diff(data$t),
# k.ahead = nrow(data)-1,
# return.k.ahead = 0:k.ahead,
# n.sims = 100,
# initial.state = self$getInitialState(),
# estimate.initial.state = private$estimate.initial,
# silent = FALSE)
## -----------------------------------------------------------------------------
model = ctsmTMB$new()
model$addSystem(dx ~ theta * (t*u^2-cos(t*u) - x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(
theta = c(initial = 2, lower = 0, upper = 100),
sigma_x = c(initial = 0.2, lower = 1e-5, upper = 5),
sigma_y = c(initial = 5e-2)
)
model$setInitialState(list(1, 1e-1*diag(1)))
## ----include=TRUE-------------------------------------------------------------
# Set simulation settings
set.seed(20)
true.pars <- c(theta=20, sigma_x=1, sigma_y=5e-2)
dt.sim <- 1e-3
t.sim <- seq(0, 1, by=dt.sim)
u.sim <- cumsum(rnorm(length(t.sim),sd=0.1))
df.sim <- data.frame(t=t.sim, y=NA, u=u.sim)
# Simulate data
sim <- model$simulate(data=df.sim,
pars=true.pars,
n.sims=1,
silent=T)
# Grab first simulation trajectory
x <- sim$states$x$i0$x1
# Extract observations from simulation and add noise
iobs <- seq(1,length(t.sim), by=10)
t.obs <- t.sim[iobs]
u.obs <- u.sim[iobs]
y = x[iobs] + true.pars["sigma_y"] * rnorm(length(iobs))
# Create data-frame
.data <- data.frame(
t = t.obs,
u = u.obs,
y = y
)
## -----------------------------------------------------------------------------
sim <- model$simulate(data=.data,
pars=c(20,1,0.05),
n.sims=100,
silent=T)
## ----fig.height=5,fig.width=9,out.width="100%", fig.align='center'------------
# Get the first (and only in this case) k-step simulation data.frame
X <- sim$states$x$i0
# Grab all the simulations (the first five columns are indices, time, etc.)
Y <- X[,-c(1:5)]
# Grab prediction time column
t <- X[,"t.j"]
# Plot
matplot(t,Y,type="l", ylim=c(-4,4))
## -----------------------------------------------------------------------------
sim <- model$simulate(data=.data,
pars=c(20,3,0.05),
n.sims=100,
silent=T)
## ----echo=FALSE, fig.height=5,fig.width=9,out.width="100%", fig.align='center'----
# Get the first (and only in this case) k-step simulation data.frame
X <- sim$states$x$i0
# Grab all the simulations (the first five columns are indices, time, etc.)
Y <- X[,-c(1:5)]
# Grab prediction time column
t <- X[,"t.j"]
# Plot
matplot(t,Y,type="l",ylim=c(-4,4))
## -----------------------------------------------------------------------------
sim <- model$simulate(data=.data,
pars=c(50,1,0.05),
n.sims=100,
silent=T)
## ----echo=FALSE, fig.height=5,fig.width=9,out.width="100%", fig.align='center'----
# Get the first (and only in this case) k-step simulation data.frame
X <- sim$states$x$i0
# Grab all the simulations (the first five columns are indices, time, etc.)
Y <- X[,-c(1:5)]
# Grab prediction time column
t <- X[,"t.j"]
# Plot
matplot(t,Y,type="l", ylim=c(-4,4))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.