| reg_mlp | R Documentation |
Multi-Layer Perceptron regression using nnet::nnet (single hidden layer).
reg_mlp(attribute, size = NULL, decay = 0.05, maxit = 1000)
attribute |
attribute target to model building |
size |
number of neurons in hidden layers |
decay |
decay learning rate |
maxit |
number of maximum iterations for training |
Feedforward neural network with size hidden units and L2 regularization controlled by decay.
Data should be scaled for stable training.
returns a object of class reg_mlp
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.
data(Boston)
model <- reg_mlp("medv", size=5, decay=0.54)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test
model <- fit(model, train)
test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.