Nothing
#'@title MLP for regression
#'@description Creates a regression object that
#' uses the Multi-Layer Perceptron (MLP) method.
#' It wraps the nnet library.
#'@param attribute attribute target to model building
#'@param size number of neurons in hidden layers
#'@param decay decay learning rate
#'@param maxit number of maximum iterations for training
#'@return obj
#'@examples
#'data(Boston)
#'model <- reg_mlp("medv", size=5, decay=0.54)
#'
#'# preparing dataset for random sampling
#'sr <- sample_random()
#'sr <- train_test(sr, Boston)
#'train <- sr$train
#'test <- sr$test
#'
#'model <- fit(model, train)
#'
#'test_prediction <- predict(model, test)
#'test_predictand <- test[,"medv"]
#'test_eval <- evaluate(model, test_predictand, test_prediction)
#'test_eval$metrics
#'@export
reg_mlp <- function(attribute, size=NULL, decay=0.05, maxit=1000) {
obj <- regression(attribute)
obj$maxit <- maxit
obj$size <- size
obj$decay <- decay
class(obj) <- append("reg_mlp", class(obj))
return(obj)
}
#'@importFrom nnet nnet
#'@export
fit.reg_mlp <- function(obj, data, ...) {
data <- adjust_data.frame(data)
obj <- fit.predictor(obj, data)
if (is.null(obj$size))
obj$size <- ceiling(ncol(data)/3)
x <- data[,obj$x]
y <- data[,obj$attribute]
obj$model <- nnet::nnet(x = x, y = y, size = obj$size, decay = obj$decay, maxit=obj$maxit, linout=TRUE, trace = FALSE)
return(obj)
}
#'@export
predict.reg_mlp <- function(object, x, ...) {
x <- adjust_data.frame(x)
x <- x[,object$x]
prediction <- predict(object$model, x)
return(prediction)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.