View source: R/trans_smoothing.R
| smoothing | R Documentation |
Family of smoothing methods that reduce noise by replacing values with the mean of a bin/cluster. Supported strategies: equal‑interval bins, equal‑frequency (quantile) bins, and clustering‑based bins (k‑means).
smoothing(n)
n |
number of bins |
The smoothing level is controlled by n (number of bins/levels). The helper tune() can choose
an n by locating the elbow (maximum curvature) of the MSE curve across candidates. After fit(),
values are mapped to bin means via transform().
returns an object of class smoothing
data(iris)
obj <- smoothing_inter(n = 2)
obj <- fit(obj, iris$Sepal.Length)
sl.bi <- transform(obj, iris$Sepal.Length)
table(sl.bi)
obj$interval
entro <- evaluate(obj, as.factor(names(sl.bi)), iris$Species)
entro$entropy
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.