Nothing
# DAL Library
# version 2.1
#'@title Classification Tune
#'@description Classification Tune
#'@param base_model base model for tuning
#'@param folds number of folds for cross-validation
#'@param metric metric used to optimize
#'@return a `cla_tune` object.
#'@examples
#'# preparing dataset for random sampling
#'sr <- sample_random()
#'sr <- train_test(sr, iris)
#'train <- sr$train
#'test <- sr$test
#'
#'# hyper parameter setup
#'tune <- cla_tune(cla_mlp("Species", levels(iris$Species)))
#'ranges <- list(size=c(3:5), decay=c(0.1))
#'
#'# hyper parameter optimization
#'model <- fit(tune, train, ranges)
#'
#'# testing optimization
#'test_prediction <- predict(model, test)
#'test_predictand <- adjust_class_label(test[,"Species"])
#'test_eval <- evaluate(model, test_predictand, test_prediction)
#'test_eval$metrics
#'@export
cla_tune <- function(base_model, folds=10, metric="accuracy") {
obj <- dal_tune(base_model, folds)
obj$name <- ""
obj$metric <- metric
class(obj) <- append("cla_tune", class(obj))
return(obj)
}
#'@title tune hyperparameters of ml model
#'@description tune hyperparameters of ml model for classification
#'@param obj object
#'@param data dataset
#'@param ranges hyperparameters ranges
#'@param ... optional arguments
#'@return fitted obj
#'@importFrom stats predict
#'@export
fit.cla_tune <- function(obj, data, ranges, ...) {
build_model <- function(obj, ranges, data) {
model <- obj$base_model
model <- set_params(model, ranges)
model <- fit(model, data)
return(model)
}
prepare_ranges <- function(obj, ranges) {
ranges <- expand.grid(ranges)
ranges$key <- 1:nrow(ranges)
obj$ranges <- ranges
return(obj)
}
evaluate_metric <- function(model, data) {
x <- as.matrix(data[,model$x])
y <- adjust_class_label(data[,model$attribute])
prediction <- stats::predict(model, x)
metric <- evaluate(model, y, prediction)$metrics[1,obj$metric]
return(metric)
}
obj <- prepare_ranges(obj, ranges)
ranges <- obj$ranges
n <- nrow(ranges)
i <- 1
hyperparameters <- NULL
if (n > 1) {
ref <- data.frame(i = 1:nrow(data), idx = 1:nrow(data))
folds <- k_fold(sample_random(), ref, obj$folds)
nfolds <- length(folds)
for (j in 1:nfolds) {
tt <- train_test_from_folds(folds, j)
metric <- rep(0, n)
msg <- rep("", n)
for (i in 1:n) {
err <- tryCatch(
{
model <- build_model(obj, ranges[i,], data[tt$train$i,])
metric[i] <- evaluate_metric(model, data[tt$test$i,])
""
},
error = function(cond) {
err <- sprintf("tune: %s", as.character(cond))
}
)
}
hyperparameters <- rbind(hyperparameters, cbind(ranges, metric, msg))
}
hyperparameters$error[hyperparameters$msg != ""] <- NA
i <- select_hyper(obj, hyperparameters)
}
model <- build_model(obj, ranges[i,], data)
if (n == 1) {
metric <- evaluate_metric(model, data)
hyperparameters <- cbind(ranges, metric)
}
attr(model, "params") <- as.list(ranges[i,])
attr(model, "hyperparameters") <- hyperparameters
return(model)
}
#'@title selection of hyperparameters
#'@description selection of hyperparameters (maximizing classification metric)
#'@param obj object
#'@param hyperparameters hyperparameters dataset
#'@return optimized key number of hyperparameters
#'@importFrom dplyr filter summarise group_by
#'@export
select_hyper.cla_tune <- function(obj, hyperparameters) {
msg <- metric <- 0
hyper_summary <- hyperparameters |> dplyr::filter(msg == "") |>
dplyr::group_by(key) |> dplyr::summarise(metric = mean(metric, na.rm=TRUE))
max_metric <- hyper_summary |> dplyr::summarise(metric = max(metric))
key <- which(hyper_summary$metric == max_metric$metric)
i <- min(hyper_summary$key[key])
return(i)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.