Nothing
#'@title XGBoost
#'@description Gradient boosting classifier using `xgboost`.
#'@param attribute target attribute name
#'@param params list of xgboost parameters
#'@param nrounds number of boosting rounds
#'@return returns a `cla_xgboost` object
#'@examples
#'if (requireNamespace("xgboost", quietly = TRUE)) {
#' data(iris)
#' model <- cla_xgboost("Species", nrounds = 20)
#' model <- fit(model, iris)
#' pred <- predict(model, iris)
#' table(pred, iris$Species)
#'}
#'@export
cla_xgboost <- function(attribute, params = list(), nrounds = 20) {
obj <- dal_learner()
obj$attribute <- attribute
obj$params <- params
obj$nrounds <- nrounds
obj$model <- NULL
obj$levels <- NULL
class(obj) <- append("cla_xgboost", class(obj))
return(obj)
}
#'@exportS3Method fit cla_xgboost
fit.cla_xgboost <- function(obj, data, ...) {
if (!requireNamespace("xgboost", quietly = TRUE)) {
stop("cla_xgboost requires the 'xgboost' package. Install with install.packages('xgboost').")
}
data <- adjust_data.frame(data)
attr <- obj$attribute
if (is.null(attr) || !attr %in% names(data)) {
stop("cla_xgboost: attribute not found in data.")
}
x <- as.matrix(data[, setdiff(names(data), attr), drop = FALSE])
y <- data[[attr]]
obj$levels <- levels(y)
y_num <- as.numeric(y) - 1
params <- obj$params
if (length(obj$levels) == 2) {
params$objective <- if (is.null(params$objective)) "binary:logistic" else params$objective
dtrain <- xgboost::xgb.DMatrix(data = x, label = y_num)
} else {
params$objective <- if (is.null(params$objective)) "multi:softprob" else params$objective
params$num_class <- if (is.null(params$num_class)) length(obj$levels) else params$num_class
dtrain <- xgboost::xgb.DMatrix(data = x, label = y_num)
}
obj$model <- xgboost::xgb.train(params = params, data = dtrain, nrounds = obj$nrounds, verbose = 0)
return(obj)
}
#'@exportS3Method predict cla_xgboost
predict.cla_xgboost <- function(object, newdata, ...) {
newdata <- adjust_data.frame(newdata)
x <- as.matrix(newdata[, setdiff(names(newdata), object$attribute), drop = FALSE])
dtest <- xgboost::xgb.DMatrix(data = x)
preds <- predict(object$model, dtest)
if (length(object$levels) == 2) {
pred <- ifelse(preds >= 0.5, object$levels[2], object$levels[1])
} else {
probs <- matrix(preds, ncol = length(object$levels), byrow = TRUE)
pred <- object$levels[max.col(probs, ties.method = "first")]
}
factor(pred, levels = object$levels)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.