Nothing
#' @name gl.report.parent.offspring
#' @title Identifies putative parent offspring within a population
#' @description
#' This script examines the frequency of pedigree inconsistent loci, that is,
#' those loci that are homozygotes in the parent for the reference allele, and
#' homozygous in the offspring for the alternate allele. This condition is not
#' consistent with any pedigree, regardless of the (unknown) genotype of the
#' other parent. The pedigree inconsistent loci are counted as an indication of
#' whether or not it is reasonable to propose the two individuals are in a
#' parent-offspring relationship.
#' @param x Name of the genlight object containing the SNP genotypes [required].
#' @param min.rdepth Minimum read depth to include in analysis [default 12].
#' @param min.reproducibility Minimum reproducibility to include in analysis
#' [default 1].
#' @param range Specifies the range to extend beyond the interquartile range for
#' delimiting outliers [default 1.5 interquartile ranges].
#' @param plot.filters Whether to show the plots of filters within the function
#' [default FALSE].
#' @param plot_theme Theme for the plot. See Details for options
#' [default theme_dartR()].
#' @param plot_colors List of two color names for the borders and fill of the
#' plots [default gl.colors(2)].
#' @param plot.dir Directory to save the plot RDS files [default as specified
#' by the global working directory or tempdir()]
#' @param plot.file Name for the RDS binary file to save (base name only,
#' exclude extension) [default NULL] Creates a plot that shows the sex linked markers.
#' @param verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2,
#' progress log; 3, progress and results summary; 5, full report
#' [default 2, unless specified using gl.set.verbosity].
#' @details
#' If two individuals are in a parent offspring relationship, the true number of
#' pedigree inconsistent loci should be zero, but SNP calling is not infallible.
#' Some loci will be miss-called. The problem thus becomes one of determining
#' if the two focal individuals have a count of pedigree inconsistent loci less
#' than would be expected of typical unrelated individuals. There are some quite
#' sophisticated software packages available to formally apply likelihoods to
#' the decision, but we use a simple outlier comparison.
#' To reduce the frequency of miss-calls, and so emphasize the difference
#' between true parent-offspring pairs and unrelated pairs, the data can be
#' filtered on read depth.
#' Typically minimum read depth is set to 5x, but you can examine the
#' distribution of read depths with the function \code{\link[dartR.base]{gl.report.rdepth}}
#' and push this up with an acceptable loss of loci. 12x might be a good minimum
#' for this particular analysis. It is sensible also to push the minimum
#' reproducibility up to 1, if that does not result in an unacceptable loss of
#' loci. Reproducibility is stored in the slot \code{@other$loc.metrics$RepAvg}
#' and is defined as the proportion of technical replicate assay pairs for which
#' the marker score is consistent. You can examine the distribution of
#' reproducibility with the function \code{\link[dartR.base]{gl.report.reproducibility}}.
#' Note that the null expectation is not well defined, and the power reduced, if
#' the population from which the putative parent-offspring pairs are drawn
#' contains many sibs. Note also that if an individual has been genotyped twice
#' in the dataset, the replicate pair will be assessed by this script as being
#' in a parent-offspring relationship.
#' The function \code{\link{gl.filter.parent.offspring}} will filter out those
#' individuals in a parent offspring relationship.
#' Note that if your dataset does not contain RepAvg or rdepth among the locus
#' metrics, the filters for reproducibility and read depth are no used.
#' Examples of other themes that can be used can be consulted in \itemize{
#' \item \url{https://ggplot2.tidyverse.org/reference/ggtheme.html} and \item
#' \url{https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/}
#' }
#' @return A set of individuals in parent-offspring relationship. NULL if no
#' parent-offspring relationships were found.
#' @author Custodian: Arthur Georges (Post to
#' \url{https://groups.google.com/d/forum/dartr})
#' @examples
#' out <- gl.report.parent.offspring(testset.gl[1:10, 1:100])
#' @seealso \code{\link[dartR.base]{gl.report.rdepth}} ,\code{\link[dartR.base]{gl.report.reproducibility}},
#' \code{\link{gl.filter.parent.offspring}}
#' @family report functions
#' @importFrom stats median IQR
#' @import patchwork
#' @export
gl.report.parent.offspring <- function(x,
min.rdepth = 12,
min.reproducibility = 1,
range = 1.5,
plot.filters = FALSE,
plot_theme = theme_dartR(),
plot_colors = gl.colors(2),
plot.dir = NULL,
plot.file = NULL,
verbose = NULL) {
# SET VERBOSITY
verbose <- gl.check.verbosity(verbose)
# SET WORKING DIRECTORY
plot.dir <- gl.check.wd(plot.dir, verbose = 0)
# FLAG SCRIPT START
funname <- match.call()[[1]]
utils.flag.start(
func = funname,
build = "Jody",
verbose = verbose
)
# CHECK DATATYPE
datatype <- utils.check.datatype(x, verbose = verbose)
# DO THE JOB
# Generate null expectation for pedigree inconsistency, and outliers
if (verbose >= 2) {
cat(
report(
" Generating null expectation for distribution of counts of
pedigree incompatibility\n"
)
)
}
# Assign individuals as populations
pop(x) <- x$ind.names
# Filter stringently on reproducibility to minimize miscalls
if (is.null(x@other$loc.metrics$RepAvg)) {
if(verbose>0) cat(
warn(
" Dataset does not include RepAvg among the locus metrics,
therefore the reproducibility filter was not used\n"
)
)
} else {
x <-
gl.filter.reproducibility(x,
threshold = min.reproducibility,
verbose = 0,
plot.display = plot.filters
)
}
# Filter stringently on read depth, to further minimize miscalls
if (is.null(x@other$loc.metrics$rdepth)) {
if(verbose>0) cat(
warn(
" Dataset does not include rdepth among the locus metrics,
therefore the read depth filter was not used\n"
)
)
} else {
x <- gl.filter.rdepth(x, lower = min.rdepth, verbose = 0,
plot.display = plot.filters)
}
pairwise_table <- function(x,
pw_fun,
dec = 4) {
ind_names <- indNames(x)
x <- as.matrix(x)
ix <- setNames(seq_along(ind_names), ind_names)
pp <- outer(ix[-1L], ix[-length(ix)],
function(ivec, jvec) {
vapply(seq_along(ivec),
function(k) {
i <- ivec[k]
j <- jvec[k]
if (i > j) {
pw_fun(x = x[i, ], y = x[j, ])
} else{
NA_real_
}
}, numeric(1))
})
return(pp)
}
fun <- function(x, y) {
vect <- (x * 10) + y
homalts <- sum(vect == 2 | vect == 20, na.rm = T)
}
count <- pairwise_table(x = x, pw_fun = fun)
# Prepare for plotting
if (verbose >= 2) {
cat(
report(
" Identifying outliers with lower than expected counts of
pedigree inconsistencies\n"
)
)
}
title <-
paste0("SNP data (DArTSeq)\nCounts of pedigree incompatible loci per
pair")
counts_plot <- as.vector(unlist(unname(count)))
counts_plot <- counts_plot[!is.na(counts_plot)]
counts_plot <- data.frame(count = counts_plot)
# Boxplot
p1 <-
ggplot(counts_plot, aes(y = count)) +
geom_boxplot(color = plot_colors[1], fill = plot_colors[2]) +
coord_flip() +
plot_theme +
xlim(range = c(-1, 1)) +
ylim(min(count), max(count)) +
ylab(" ") +
theme(axis.text.y = element_blank(), axis.ticks.y = element_blank()) +
ggtitle(title)
outliers_temp <- ggplot_build(p1)$data[[1]]$outliers[[1]]
lower.extremes <-
outliers_temp[outliers_temp < stats::median(count,
na.rm = T)]
if (length(lower.extremes) == 0) {
outliers <- NULL
} else {
outliers <- data.frame(Outlier = lower.extremes)
}
outliers <- unique(outliers)
# Ascertain the identity of the pairs
if (verbose >= 2) {
cat(report(" Identifying outlying pairs\n"))
}
if (length(lower.extremes) > 0) {
tmp <- count
# tmp[lower.tri(tmp)] <- t(tmp)[lower.tri(tmp)]
outliers_df <- NULL
for (i in 1:length(outliers$Outlier)) {
# Identify
tmp2 <- which(tmp == outliers$Outlier[i],
arr.ind = T)
ind1 <- rownames(count)[tmp2[, "row"]]
ind2 <- colnames(count)[tmp2[, "col"]]
# Z-scores
zscore <-
(mean(count, na.rm = TRUE) - outliers$Outlier[i]) /
sd(count, na.rm = TRUE)
zscore <- zscore * -1
outliers_p <-
round(pnorm(
mean = mean(count, na.rm = TRUE),
sd = sd(count, na.rm = TRUE),
q = zscore
), 8)
outliers_df_tmp <- data.frame(
Outlier = rep(outliers$Outlier[i], length(ind1)),
ind1 = ind1,
ind2 = ind2,
zscore = zscore,
p = outliers_p
)
outliers_df <- rbind(outliers_df, outliers_df_tmp)
}
# ordering by number of outliers
outliers_df <- outliers_df[order(outliers_df$Outlier,
decreasing = T),]
}
# Extract the quantile threshold
iqr <- stats::IQR(count, na.rm = TRUE)
qth <- quantile(count, 0.25, na.rm = TRUE)
cutoff <- qth - iqr * range
# Histogram
p2 <-
ggplot(counts_plot, aes(x = count)) +
geom_histogram(bins = 50,
color = plot_colors[1],
fill = plot_colors[2]) +
geom_vline(xintercept = cutoff,
color = "red",
size = 1) +
coord_cartesian(xlim = c(min(count), max(count))) +
xlab("No. Pedigree incompatible") +
ylab("Count") +
plot_theme
# Output the outlier loci
if (length(lower.extremes) == 0) {
df <- NULL
if(verbose>0) cat(important(" No outliers detected\n"))
}else{
outliers_df <- outliers_df[order(outliers_df$Outlier), ]
df <- outliers_df
df <- df[which(df$Outlier<=cutoff),]
if (verbose >= 3) {
print(outliers_df)
}
}
# PRINTING OUTPUTS
# using package patchwork
p3 <- (p1 / p2) + plot_layout(heights = c(1, 4))
print(p3)
# Optionally save the plot ---------------------
if (!is.null(plot.file)) {
tmp <- utils.plot.save(p3,
dir = plot.dir,
file = plot.file,
verbose = verbose
)
}
# FLAG SCRIPT END
if (verbose >= 1) {
cat(report("Completed:", funname, "\n"))
}
# RETURN
return(df)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.