Plotting 6 variants of principal coordinates analysis

Share:

Description

Plotting 6 ordinations using euclidean distance, manhattan distance, chord distance, Canberra distance, Bray-Curtis distance (vegdist) and correlation as distance respectively. Transformation of scores can be adjusted according to x'= x exp(y). All ordinations (pco) superimposed to PCA solution (pca) by procrustes analysis.

Usage

1
2
3
4
5
6
7
pcovar(veg, y, ...)
pcoatest(veg, y=1)

## Default S3 method:
pcovar(veg, y, ...)
## S3 method for class 'pcovar'
plot(x,...,reversals=c(0,0,0,0,0,0))

Arguments

veg

A vegetation data frame, releves are rows, species columns

y

Transformation of species scores: x'= x exp(y)

...

Additional plot paramteters, see par.

reversals

Vector reversals=c(0,0,0,0,0,0). When set to 1 the corresponding plot is mirrored vertically.

x

An object of class "pcovar".

Value

An object of class "pcovar" with at least the following items:

nrel

The number of releves

nspec

The number of species

y

Transformation of species scores: x'= x exp(y)

euclidpca

PCA coordinates, euclid used, adjusted by procrustes analysis

euclidpco

PCO coordinates, euclid used, adjusted by procrustes analysis

manhpco

PCO coordinates, manhattan used, adjusted by procrustes analysis

manhpca

PCA coordinates, manhattan used, adjusted by procrustes analysis

cordpco

PCO coordinates, chord distance used, adjusted by procrustes analysis

cordpca

PCA coordinates, chord distance used, adjusted by procrustes analysis

canpco

PCO coordinates, canberra dist. used, adjusted by procrustes analysis

canpca

PCA coordinates, canberry dist. used, adjusted by procrustes analysis

bpco

PCO coordinates, Bray-Curtis dist. used, adjusted by procrustes analysis

bpca

PCA coordinates, Bray-Curtis dist. used, adjusted by procrustes analysis

corpco

PCO coord., correlation as dist. used, adjusted by procrustes analysis

corpca

PCA coord., correlation as dist. used, adjusted by procrustes analysis

Note

This function serves primarily instructional purposes

Author(s)

Otto Wildi

References

Wildi, O. 2013. Data Analysis in Vegetation Ecology. 2nd ed. Wiley-Blackwell, Chichester.

Examples

1
2
o.pcovar<- pcovar(sveg,y=1)
plot(o.pcovar,reversals=c(0,0,0,0,0,0))

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.