R/dbarts.R

Defines functions dbarts validateArgumentsInEnvironment dbartsControl

Documented in dbarts dbartsControl

setMethod("initialize", "dbartsControl",
          function(.Object, ...)
{
  .Object <- callNextMethod()

  validObject(.Object)
  .Object
})

## we don't actually use these defaults; see class definition
## this is only provided for UI hints. Exception is n.cuts, which
## isn't part of class
dbartsControl <-
  function(verbose = FALSE, keepTrainingFits = TRUE, useQuantiles = FALSE,
           keepTrees = FALSE, n.samples = NA_integer_, n.cuts = 100L,
           n.burn = 200L, n.trees = 75L, n.chains = 4L, n.threads = guessNumCores(),
           n.thin = 1L, printEvery = 100L, printCutoffs = 0L,
           rngKind = "default", rngNormalKind = "default", updateState = TRUE)
{
  result <- new("dbartsControl",
                verbose = as.logical(verbose),
                keepTrainingFits = as.logical(keepTrainingFits),
                useQuantiles = as.logical(useQuantiles),
                keepTrees = as.logical(keepTrees),
                n.samples = coerceOrError(n.samples, "integer"),
                n.burn = coerceOrError(n.burn, "integer"),
                n.trees = coerceOrError(n.trees, "integer"),
                n.chains = coerceOrError(n.chains, "integer"),
                n.threads = coerceOrError(n.threads, "integer"),
                n.thin = coerceOrError(n.thin, "integer"),
                printEvery = coerceOrError(printEvery, "integer"),
                printCutoffs = coerceOrError(printCutoffs, "integer"),
                rngKind = rngKind,
                rngNormalKind = rngNormalKind,
                updateState = as.logical(updateState))
  
  n.cuts <- coerceOrError(n.cuts, "integer")
  if (n.cuts <= 0L) stop("'n.cuts' must be a positive integer")
  attr(result, "n.cuts") <- n.cuts 

  result
}

validateArgumentsInEnvironment <- function(envir, func, control, verbose, n.samples, sigma)
{
  controlIsMissing <- missing(control)
  
  if (!controlIsMissing) {
    if (!inherits(control, "dbartsControl"))
      stop("'control' argument must be of class dbartsControl; use dbartsControl() function to create")
    envir$control <- control
  }

  if (!missing(verbose)) {
    if (!is.logical(verbose) || is.na(verbose)) stop("'verbose' argument to dbarts must be TRUE/FALSE")
  } else if (!controlIsMissing) {
    envir$verbose <- control@verbose
  }
  
  if (!missing(n.samples)) {
    tryCatch(n.samples <- as.integer(n.samples), warning = function(e)
             stop("'n.samples' argument to dbarts must be coerceable to integer type"))
    if (length(n.samples) != 1L) stop("'n.samples' must be of length 1")
    if (is.null(n.samples))
      stop("'n.samples' argument to dbarts cannot be NULL")
    if (is.na(n.samples) || n.samples < 0L)
      stop("'n.samples' argument to dbarts must be a non-negative integer")
    envir$control@n.samples <- n.samples
  } else if (controlIsMissing || is.na(control@n.samples)) {
    envir$control@n.samples <- formals(func)[["n.samples"]]
  }

  if (!missing(sigma) && !is.na(sigma)) {
    tryCatch(sigma <- as.double(sigma), warning = function(e)
             stop("'sigma' argument to dbarts must be coerceable to numeric type"))
    if (length(sigma) != 1L) stop("'sigma' must be of length 1")
    if (is.null(sigma) || sigma <= 0.0) stop("'sigma' argument to dbarts must be positive")
    
    envir$sigma <- sigma
  }
}

dbarts <- function(formula, data, test, subset, weights, offset, offset.test = offset,
                   verbose = FALSE, n.samples = 800L,
                   tree.prior = cgm, node.prior = normal, resid.prior = chisq,
                   control = dbartsControl(), sigma = NA_real_)
{
  matchedCall <- match.call()
  
  evalEnv <- parent.frame(1L)

  validateCall <- redirectCall(matchedCall, quoteInNamespace(validateArgumentsInEnvironment))
  validateCall <- addCallArgument(validateCall, 1L, sys.frame(sys.nframe()))
  validateCall <- addCallArgument(validateCall, 2L, dbarts::dbarts)
  eval(validateCall, evalEnv, getNamespace("dbarts"))

  if (length(control@call) == 1L && control@call == call("NA")) control@call <- matchedCall
  control@verbose <- verbose

  dataCall <- redirectCall(matchedCall, quoteInNamespace(dbartsData))
  data <- eval(dataCall, evalEnv)
  #cat("x address after dbartsData call: ", .Call("dbarts_getPointerAddress", [email protected]), "\n", sep = "")
  
  data@n.cuts <- rep_len(attr(control, "n.cuts"), ncol(data@x))
  data@sigma  <- sigma
  attr(control, "n.cuts") <- NULL
  
  
  uniqueResponses <- unique(data@y)
  if (length(uniqueResponses) == 2 && all(sort(uniqueResponses) == c(0, 1))) control@binary <- TRUE
  
  if (is.na(data@sigma) && !control@binary)
    data@sigma <- summary(lm(data@y ~ data@x, weights = data@weights, offset = data@offset))$sigma
  
  ## bart will passthrough with offset == something no matter what, which we can NULL out
  if (!control@binary && !is.null(data@offset) && all(data@offset == 0.0)) {
    data@offset <- NULL
  }
  if (!control@binary && !is.null(data@offset.test) && all(data@offset.test == 0.0)) {
    data@offset.test <- NULL
  }
  #cat("x address after updating data: ", .Call("dbarts_getPointerAddress", [email protected]), "\n", sep = "")

  parsePriorsCall <- redirectCall(matchedCall, quoteInNamespace(parsePriors))
  parsePriorsCall <- setDefaultsFromFormals(parsePriorsCall, formals(dbarts), "tree.prior", "node.prior", "resid.prior")
  parsePriorsCall$control <- control
  parsePriorsCall$data <- data
  parsePriorsCall$parentEnv <- evalEnv
  if (control@binary) {
    if (any(names(parsePriorsCall) == "resid.prior"))
      parsePriorsCall[[which(names(parsePriorsCall) == "resid.prior")]] <- quote(fixed(1))
    else 
      parsePriorsCall[[which(names(formals(parsePriors)) == "resid.prior") + 1L]] <- quote(fixed(1))
  }
  priors <- eval(parsePriorsCall)

  model <- new("dbartsModel", priors$tree.prior, priors$node.prior, priors$resid.prior,
               node.scale = if (control@binary) 3.0 else 0.5)
  
  result <- new("dbartsSampler", control, model, data)
  #cat("x address after creating sampler: ", .Call("dbarts_getPointerAddress", [email protected]), "\n", sep = "")
  #cat("x address in sampler$data: ", .Call("dbarts_getPointerAddress", [email protected]), "\n", sep = "")
  result
}


dbartsSampler <-
  setRefClass("dbartsSampler",
              fields = list(
                pointer = "externalptr",
                control = "dbartsControl",
                model   = "dbartsModel",
                data    = "dbartsData",
                state   = "ANY"         ## is either a list of states, or a promise to evaluate
                ),
              methods = list(
                initialize =
                  function(control, model, data, ...)
                {
                  if (!inherits(control, "dbartsControl")) stop("'control' must inherit from dbartsControl")
                  if (!inherits(model, "dbartsModel")) stop("'model' must inherit from dbartsModel")
                  if (!inherits(data, "dbartsData")) stop("'data' must inherit from dbartsData")
                  
                  .self$control <- control
                  .self$model   <- model
                  .self$data    <- data
                  
                  .self$pointer <- .Call(C_dbarts_create, .self$control, .self$model, .self$data)
                  delayedAssign("state", { if (control@updateState) .Call(C_dbarts_createState, pointer) else NULL }, eval.env = as.environment(.self), assign.env = as.environment(.self))
                  
                  callSuper(...)
                },
                run = function(numBurnIn, numSamples, updateState = NA) {
                  'Runs the posterior sampler for numBurnIn + numSamples iterations and
                   returns a list with the results.'
                  if (missing(numBurnIn))  numBurnIn  <- NA_integer_
                  if (missing(numSamples)) numSamples <- NA_integer_
                  
                  ptr <- getPointer()
                  samples <- .Call(C_dbarts_run, ptr, as.integer(numBurnIn), as.integer(numSamples))

                  if ((is.na(updateState) && control@updateState == TRUE) || identical(updateState, TRUE))
                    storeState(ptr)

                  if (is.null(samples)) return(invisible(NULL))
                  
                  samples
                },
                sampleTreesFromPrior = function(updateState = NA) {
                  'Draws tree structure from prior; does not update tree predictions, so sampler
                   will be in invalid state'
                  
                  ptr <- getPointer()
                  samples <- .Call(C_dbarts_sampleTreesFromPrior, ptr)

                  if ((is.na(updateState) && control@updateState == TRUE) || identical(updateState, TRUE))
                    storeState(ptr)

                  invisible(NULL)
                },
                copy = function(shallow = FALSE) {
                  'Creates a deep or shallow copy of the sampler.'
                  dupe <-
                    if (shallow) {
                      dbartsSampler$new(control, model, data)
                    } else {
                      newData <- data
                      ## only need to dupe things that can be changed internally, as the rest will be
                      ## simply swapped out
                      newData@x <- .Call(C_dbarts_deepCopy, data@x)
                      if (!is.null(data@x.test)) {
                        newData@x.test <- .Call(C_dbarts_deepCopy, data@x.test)
                      }
                      dbartsSampler$new(control, model, newData)
                    }
                  
                  if (!is.null(state)) {
                    newState <- state
                    attr(newState, "currentNumSamples") <- .Call(C_dbarts_deepCopy, attr(state, "currentNumSamples"))
                    attr(newState, "currentSampleNum") <- .Call(C_dbarts_deepCopy, attr(state, "currentSampleNum"))
                    for (chainNum in seq_len(control@n.chains)) {
                      newState[[chainNum]]@fit.tree <- .Call(C_dbarts_deepCopy, state[[chainNum]]@fit.tree)
                      newState[[chainNum]]@fit.total <- .Call(C_dbarts_deepCopy, state[[chainNum]]@fit.total)
                      if (!is.null(data@x.test)) {
                        newState[[chainNum]]@fit.test <- .Call(C_dbarts_deepCopy, state[[chainNum]]@fit.test)
                      }
                      newState[[chainNum]]@sigma <- .Call(C_dbarts_deepCopy, state[[chainNum]]@sigma)
                      newState[[chainNum]]@trees <- .Call(C_dbarts_deepCopy, state[[chainNum]]@trees)
                      
                      if (control@keepTrees)
                        newState[[chainNum]]@savedTrees <- .Call(C_dbarts_deepCopy, state[[chainNum]]@savedTrees)
                    }
                    attr(newState, "runningTime") <- .Call(C_dbarts_deepCopy, attr(state, "runningTime"))
                    
                    dupe$setState(newState)
                  }
                  
                  dupe
                },
                show = function() {
                  'Pretty prints the object.'
                  
                  cat("dbarts sampler\n")
                  cat("  call: ")
                  writeLines(deparse(control@call))
                  cat("\n")
                  
                  invisible(NULL)
                },
                predict = function(x.test, offset.test) {
                  'Using existing sampler to predict for new data without re-running.'
                  
                  selfEnv <- parent.env(environment())
                  
                  ptr <- getPointer()
                  
                  x.test <- validateXTest(x.test, attr(data@x, "term.labels"), ncol(data@x), colnames(data@x), attr(data@x, "drop"))
                  if (is.null(x.test)) stop("x.test cannot be NULL")
                  
                  if (missing(offset.test) || is.null(offset.test)) {
                    offset.test <- NA_real_
                  } else {
                    offset.test <- as.double(offset.test)
                    if (length(offset.test) == 1)
                      offset.test <- rep_len(offset, nrow(x.test))
                    if (!identical(length(offset.test), nrow(x.test)))
                      stop("length of test offset must be equal to number of rows in test matrix")
                  }
                  
                  .Call(C_dbarts_predict, ptr, x.test, offset.test)
                },
                setControl = function(newControl) {
                  'Sets the control object for the sampler to a new one. Preserves the call() slot.'
                  
                  if (!inherits(newControl, "dbartsControl")) stop("'control' must inherit from dbartsControl")
                  
                  selfEnv <- parent.env(environment())
                  
                  newControl@binary <- control@binary
                  newControl@call   <- control@call
                  
                  ptr <- getPointer()
                  
                  selfEnv$control <- newControl
                  .Call(C_dbarts_setControl, ptr, control)
                  
                  invisible(NULL)
                },
                setModel = function(newModel) {
                  'Sets the model object for the sampler to a new one.'
                  
                  if (!inherits(newModel, "dbartsModel")) stop("'model' must inherit from dbartsModel")
                  ptr <- getPointer()
                  selfEnv <- parent.env(environment())
                  
                  selfEnv$model <- newModel
                  .Call(C_dbarts_setModel, ptr, model)
                  
                  invisible(NULL)
                },
                setData = function(newData, updateState = NA) {
                  'Sets the data object for the sampler to a new one. Preserves the n.cuts and sigma slots.'
                  
                  if (!inherits(newData, "dbartsData")) stop("'data' must inherit from dbartsData")
                  
                  newData@n.cuts <- data@n.cuts
                  newData@sigma  <- data@sigma
                  
                  ptr <- getPointer()
                  selfEnv <- parent.env(environment())
                  
                  selfEnv$data <- newData
                  .Call(C_dbarts_setData, ptr, data)
                  
                  if ((is.na(updateState) && control@updateState == TRUE) || identical(updateState, TRUE))
                    storeState(ptr)
                  
                  invisible(NULL)
                },
                setResponse = function(y, updateState = NA) {
                  'Changes the response against which the sampler is fitted.'
                  ptr <- getPointer()
                  selfEnv <- parent.env(environment())
                  
                  selfEnv$data@y <- as.double(y)
                  .Call(C_dbarts_setResponse, ptr, data@y)

                  if ((is.na(updateState) && control@updateState == TRUE) || identical(updateState, TRUE))
                    storeState(ptr)

                  invisible(NULL)
                },
                setOffset = function(offset, updateState = NA) {
                  'Changes the offset slot used to adjust the response.'
                  ptr <- getPointer()
                  selfEnv <- parent.env(environment())
                  
                  offset.test <- NA
                  if (is.null(offset)) {
                    if (identical(data@testUsesRegularOffset, TRUE)) offset.test <- NULL
                  } else {
                    offset <- as.double(offset)

                    if (length(offset) == 1) {
                      if (identical(data@testUsesRegularOffset, TRUE)) {
                        if (!is.null(data@x.test)) {
                          offset.test <- rep_len(offset, nrow(data@x.test))
                        } else {
                          offset.test <- NULL
                        }
                      }
                      offset <- rep_len(offset, length(data@y))
                    } else {
                      if (!identical(length(offset), length(data@y)))
                        stop('length of replacement offset is not equal to number of observations')
                      if (identical(data@testUsesRegularOffset, TRUE)) {
                        if (!is.null(data@x.test) && length(offset) == nrow(data@x.test)) {
                          offset.test <- offset
                        } else {
                          offset.test <- NULL
                        }
                      }
                    }
                  }

                  selfEnv$data@offset <- offset
                  .Call(C_dbarts_setOffset, ptr, data@offset)
                  if (!identical(offset.test, NA)) {
                    selfEnv$data@offset.test <- offset.test
                    .Call(C_dbarts_setTestOffset, ptr, data@offset.test)
                  }

                  if ((is.na(updateState) && control@updateState == TRUE) || identical(updateState, TRUE))
                    storeState(ptr)
                  
                  invisible(NULL)
                },
                setWeights = function(weights, updateState = NA) {
                  'Changes the weights with which the sampler is fitted.'
                  ptr <- getPointer()
                  selfEnv <- parent.env(environment())
                  
                  selfEnv$data@weights <- as.double(weights)
                  .Call(C_dbarts_setWeights, ptr, data@weights)

                  if ((is.na(updateState) && control@updateState == TRUE) || identical(updateState, TRUE))
                    storeState(ptr)

                  invisible(NULL)
                },
                setPredictor = function(x, column, forceUpdate, updateCutPoints = FALSE, updateState = NA) {
                  'Changes a single column of the predictor matrix, or the entire matrix itself if the column argument is missing. Can force the trees to update, or roll back for rejection sampling.'
                  
                  selfEnv <- parent.env(environment())
                  
                  if (control@keepTrees && updateCutPoints &&
                      (is.null(selfEnv$keepTreesWarnOnce) || self$keepTreesWarnOnce == FALSE)) {
                    warning("changing cut points does not update saved trees")
                    selfEnv$keepTreesWarnOnce <- TRUE
                  }

                  columnIsMissing <- missing(column)
                  forceUpdateIsMissing <- missing(forceUpdate)

                  if (!columnIsMissing && is.character(column)) {
                    if (is.null(colnames(data@x))) stop("column names not specified at initialization, so cannot be replaced by name")
                    
                    column <- match(column, colnames(data@x))
                    if (is.na(column)) stop("column name not found in names of current X")
                  }
                  
                  x <- if (is.matrix(x)) matrix(as.double(x), nrow(x)) else as.double(x)
                   
                  forceUpdate <-
                    if (forceUpdateIsMissing) {
                      columnIsMissing
                    } else {
                      coerceOrError(forceUpdate, "logical")
                    }
                  updateCutPoints <- coerceOrError(updateCutPoints, "logical")
                  
                  ptr <- getPointer()
                   
                  if (columnIsMissing) {
                    x.old <- selfEnv$data@x
                    selfEnv$data@x <- x
                    updateSuccessful <- .Call(C_dbarts_setPredictor, ptr, data@x, forceUpdate, updateCutPoints)
                    if (!forceUpdate && !updateSuccessful) selfEnv$data@x <- x.old
                  } else {
                    updateSuccessful <- .Call(C_dbarts_updatePredictor, ptr, x, as.integer(column), forceUpdate, updateCutPoints)
                  }
                  
                  if ((is.na(updateState) && control@updateState == TRUE) || identical(updateState, TRUE))
                    storeState(ptr)
                  
                  if (!forceUpdate) updateSuccessful else invisible(NULL)
                },
                setCutPoints = function(cuts, column, updateState = NA) {
                  'Changes the cut points for the predictors in column, or the entire set itself if the column argument is missing. Forces the change by pruning any leaves that end up empty.'
                  
                  selfEnv <- parent.env(environment())
                  
                  if (control@keepTrees && 
                      (is.null(selfEnv$keepTreesWarnOnce) || self$keepTreesWarnOnce == FALSE)) {
                    warning("changing cut points does not update saved trees")
                    selfEnv$keepTreesWarnOnce <- TRUE
                  }

                  columnIsMissing <- missing(column)

                  if (!columnIsMissing && is.character(column)) {
                    if (is.null(colnames(data@x))) stop("column names not specified at initialization, so cannot be replaced by name")
                    
                    column <- match(column, colnames(data@x))
                    if (is.na(column)) stop("column name not found in names of current X")
                  }
                  
                  if (!is.list(cuts))
                    cuts <- list(cuts)
                  for (j in seq_along(cuts))
                    if (!is.double(cuts[[j]])) cuts[[j]] <- as.double(cuts[[j]])
                  
                  ptr <- getPointer()
                  
                  .Call(C_dbarts_setCutPoints, ptr, cuts, if (columnIsMissing) NULL else as.integer(column))
                  
                  if ((is.na(updateState) && control@updateState == TRUE) || identical(updateState, TRUE))
                    storeState(ptr)
                  
                  invisible(NULL)
                },
                setTestPredictor = function(x.test, column) {
                  'Changes a single column of the test predictor matrix.'

                  columnIsMissing <- missing(column)
                  
                  if (!columnIsMissing && is.character(column)) {
                    if (is.null(colnames(data@x.test))) stop("column names not specified at initialization, so cannot be replaced by name")
                    
                    column <- match(column, colnames(data@x.test))
                    if (is.na(column)) stop("column name not found in names of current test predictor matrix")
                  }
                  
                  ptr <- getPointer()
                  selfEnv <- parent.env(environment())
                  
                  if (columnIsMissing) {
                    selfEnv$data@x.test <- validateXTest(x.test, attr(data@x, "term.labels"), ncol(data@x), colnames(data@x), attr(data@x, "drop"))
                    .Call(C_dbarts_setTestPredictor, ptr, data@x.test)
                  } else {
                    x.test <- if (is.matrix(x.test)) matrix(as.double(x.test), nrow(x.test)) else as.double(x.test)
                    .Call(C_dbarts_updateTestPredictor, ptr, x.test, as.integer(column))
                  }
                  
                  invisible(NULL)
                },
                setTestPredictorAndOffset = function(x.test, offset.test) {
                  'Changes the test predictor matrix, and optionally the test offset.'
                  ptr <- getPointer()
                  selfEnv <- parent.env(environment())
                  
                  x.test <- validateXTest(x.test, attr(data@x, "term.labels"), ncol(data@x), colnames(data@x), attr(data@x, "drop"))
                  
                  if (!missing(offset.test)) {
                    if (is.null(x.test)) {
                      if (!is.null(offset.test)) stop("when test matrix is NULL, test offset must be as well")
                    } else {
                      if (!is.null(offset.test)) {
                        offset.test <- as.double(offset.test)
                        if (length(offset.test) == 1) {
                          offset.test <- rep_len(offset, nrow(x.test))
                        }
                        if (!identical(length(offset.test), nrow(x.test))) {
                          stop("length of test offset must be equal to number of rows in test matrix")
                        }
                      }
                    }
                    selfEnv$data@testUsesRegularOffset <- FALSE
                    selfEnv$data@x.test <- x.test
                    selfEnv$data@offset.test <- offset.test
                    .Call(C_dbarts_setTestPredictorAndOffset, ptr, data@x.test, data@offset.test)
                  } else {
                    selfEnv$data@x.test <- x.test
                    .Call(C_dbarts_setTestPredictorAndOffset, ptr, data@x.test, NA_real_)
                  }
                  invisible(NULL)
                },
                setTestOffset = function(offset.test) {
                  'Changes the test offset.'
                  ptr <- getPointer()
                  selfEnv <- parent.env(environment())

                  selfEnv$data@testUsesRegularOffset <- FALSE
                  if (!is.null(offset.test)) {
                    if (is.null(data@x.test)) stop("when test matrix is NULL, test offset must be as well")
                    if (length(offset.test) == 1) offset.test <- rep_len(offset.test, nrow(data@x.test))
                    if (length(offset.test) != nrow(data@x.test))
                      stop("length of test offset must be equal to number of rows in test matrix")
                  }
                  selfEnv$data@offset.test <- offset.test
                  .Call(C_dbarts_setTestOffset, ptr, data@offset.test)
                  
                  invisible(NULL)
                },
                getLatents = function(result) {
                  'For binary models, returns the current value of the latent variable representation.'
                  resultIsMissing <- missing(result)
                  
                  ptr <- getPointer()
                  
                  .Call(C_dbarts_storeLatents, ptr, if (resultIsMissing) NULL else result)
                },
                getPointer = function() {
                  'Returns the underlying reference pointer, checking for consistency first.'
                  selfEnv <- parent.env(environment())
                  
                  if (.Call(C_dbarts_isValidPointer, pointer) == FALSE) {
                    oldVerbose <- control@verbose
                    selfEnv$control@verbose <- FALSE
                    selfEnv$pointer <- .Call(C_dbarts_create, control, model, data)
                    if (!is.null(state)) {
                      selfEnv$state <- .Call(C_dbarts_restoreState, pointer, state)
                    }
                    if (control@verbose != oldVerbose) {
                      selfEnv$control@verbose <- oldVerbose
                      .Call(C_dbarts_setControl, pointer, control)
                    }
                  }
                  
                  pointer
                },
                setState = function(newState) {
                  'Sets the internal state from a cache.'
                  
                  if (!is.list(newState)) stop("'state' must be a list of dbartsState objects")
                  if (length(newState) != control@n.chains) stop("'state' length must equal number of chains")
                  for (chainNum in seq_along(newState))
                    if (!is(newState[[chainNum]], "dbartsState")) stop("'state' must inherit from dbartsState")
                  
                  selfEnv <- parent.env(environment())
                  if (.Call(C_dbarts_isValidPointer, pointer) == FALSE) {
                    oldVerbose <- control@verbose
                    selfEnv$control@verbose <- FALSE
                    selfEnv$pointer <- .Call(C_dbarts_create, control, model, data)
                    if (control@verbose != oldVerbose) {
                      selfEnv$control@verbose <- oldVerbose
                      .Call(C_dbarts_setControl, pointer, control)
                    }
                  }
                  if (!is.null(newState)) {
                    selfEnv$state <- .Call(C_dbarts_restoreState, pointer, newState)
                  }

                  invisible(NULL)
                },
                storeState = function(ptr = getPointer()) {
                  'Updates the cached internal state used for saving/loading.'
                  selfEnv <- parent.env(environment())
                  if (is.null(state)) {
                    selfEnv$state <- .Call(C_dbarts_createState, ptr)
                  } else {
                    .Call(C_dbarts_storeState, ptr, state)
                  }

                  invisible(NULL)
                },
                printTrees = function(treeNums, chainNums, sampleNums) {
                  'Produces an info dump of the internal state of the trees.'
                  matchedCall <- match.call()
                  if (is.null(matchedCall$chainNums)) chainNums <- seq_len(control@n.chains)
                  if (is.null(matchedCall$sampleNums)) {
                    sampleNums <- if (control@keepTrees) seq_len(control@n.samples) else NULL
                  } else {
                    if (!control@keepTrees) {
                      warning("sampleNums ignored if keepTrees is FALSE")
                      sampleNums <- NULL
                    } else {
                      sampleNums <- as.integer(sampleNums)
                    }
                  }
                  if (is.null(matchedCall$treeNums)) treeNums <- seq_len(control@n.trees)
                  
                  ptr <- getPointer()
                  invisible(.Call(C_dbarts_printTrees, ptr, as.integer(chainNums), sampleNums, as.integer(treeNums)))
                },
                getTrees = function(treeNums, chainNums, sampleNums) {
                  'Returns a data.frame containing the internal state of the trees.'
                  matchedCall <- match.call()
                  if (is.null(matchedCall$chainNums)) chainNums <- seq_len(control@n.chains)
                  if (is.null(matchedCall$sampleNums)) {
                    sampleNums <- if (control@keepTrees) seq_len(control@n.samples) else NULL
                  } else {
                    if (!control@keepTrees) {
                      warning("sampleNums ignored if keepTrees is FALSE")
                      sampleNums <- NULL
                    } else {
                      sampleNums <- as.integer(sampleNums)
                    }
                  }
                  if (is.null(matchedCall$treeNums)) treeNums <- seq_len(control@n.trees)
                  
                  chainNums <- as.integer(chainNums)
                  treeNums <- as.integer(treeNums)
                  
                  if (any(chainNums <= 0 | chainNums > control@n.chains))
                    stop("chainNums must be in [1, ", control@n.chains, "]")
                  if (control@keepTrees && any(sampleNums <= 0 | sampleNums > control@n.samples))
                    stop("sampleNums must be in [1, ", control@n.samples, "]")
                  if (any(treeNums <= 0 | treeNums > control@n.trees))
                    stop("treeNums must be in [1, ", control@n.trees, "]")
                  
                  ptr <- getPointer()
                  .Call(C_dbarts_getTrees, ptr, chainNums, sampleNums, treeNums)
                },
                plotTree = function(treeNum, chainNum, sampleNum, treePlotPars = list(nodeHeight = 12, nodeWidth = 40, nodeGap = 8), ...) {
                  'Minimialist visualization of tree branching and contents.'
                  
                  matchedCall <- match.call()
                  if (is.null(matchedCall$chainNum)) {
                    if (control@n.chains == 1L) chainNum <- 1L
                    else stop("chainNum required if more than one chain in sampler")
                  }
                  if (is.null(matchedCall$sampleNum)) {
                    sampleNum <- if (control@keepTrees) control@n.samples else 1L
                  }
                  
                  tree <-
                    if (control@keepTrees) .self$getTrees(treeNum, chainNum, sampleNum)
                    else                   .self$getTrees(treeNum, chainNum)
                  
                  maxDepth <- getTreeDepthAndSize(tree)[["depth"]]
                  
                  tree <- cbind(tree, y = numeric(nrow(tree)), x = numeric(nrow(tree)), index = integer(nrow(tree)))
                  tree <- fillPlotCoordinatesForNode(tree, maxDepth, 1L, 1L)
                  numEndNodes <- tree$index[1L] - 1L
                  #tree$index <- NULL
                  
                  plotHeight <- treePlotPars$nodeHeight * maxDepth + treePlotPars$nodeGap * (maxDepth - 1)
                  dotsList <- list(...)
                  dotsList$mar = c(0, 0, 0, 0)
                  par(dotsList)
                  plot(NULL, type = "n", bty = "n", xaxt = "n", yaxt = "n", xlab = "", ylab = "",
                       xlim = c(0, treePlotPars$nodeWidth * numEndNodes), ylim = c(0, plotHeight))
                  plotNode(tree, .self, treePlotPars)
                  
                  invisible(NULL)
                }
              ))

Try the dbarts package in your browser

Any scripts or data that you put into this service are public.

dbarts documentation built on Sept. 24, 2019, 5:05 p.m.