View source: R/distcov_function.R
distcov | R Documentation |
Calculates the distance covariance \insertCiteszekely2007,szekely2009browniandcortools.
distcov( X, Y, affine = FALSE, standardize = FALSE, bias.corr = FALSE, type.X = "sample", type.Y = "sample", metr.X = "euclidean", metr.Y = "euclidean", use = "all", algorithm = "auto" )
X |
contains either the first sample or its corresponding distance matrix. In the first case, X can be provided either as a vector (if one-dimensional), a matrix or a data.frame (if two-dimensional or higher). In the second case, the input must be a distance matrix corresponding to the sample of interest. If X is a sample, type.X must be specified as "sample". If X is a distance matrix, type.X must be specified as "distance". |
Y |
see X. |
affine |
logical; specifies if the affinely invariant distance covariance \insertCitedueck2014affinelydcortools should be calculated or not. |
standardize |
logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE. |
bias.corr |
logical; specifies if the bias corrected version of the sample distance covariance \insertCitehuo2016fastdcortools should be calculated. |
type.X |
For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample. |
type.Y |
see type.X. |
metr.X |
specifies the metric which should be used to compute the distance matrix for X (ignored when type.X = "distance"). Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples). For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric, parameter)", e.g. c("gaussian", 3) for a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and "1" for all other metrics. See \insertCitelyons2013distance,sejdinovic2013equivalence,bottcher2017detecting;textualdcortools for details. |
metr.Y |
see metr.X. |
use |
specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations. |
algorithm |
specifies the algorithm used for calculating the distance covariance. "fast" uses an O(n log n) algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also \insertCitehuo2016fast;textualdcortools. "memsave" uses a memory saving version of the standard algorithm with computational complexity O(n^2) but requiring only O(n) memory. "standard" uses the classical algorithm. User-specified metrics always use the classical algorithm. "auto" chooses the best algorithm for the specific setting using a rule of thumb. |
numeric; the distance covariance between samples X and Y.
bottcher2017detectingdcortools
\insertRefdueck2014affinelydcortools
\insertRefhuo2016fastdcortools
\insertReflyons2013distancedcortools
\insertRefsejdinovic2013equivalencedcortools
\insertRefszekely2007dcortools
\insertRefszekely2009browniandcortools
X <- rnorm(100) Y <- X + 3 * rnorm(100) distcov(X, Y) # standard distance covariance distcov(X, Y, metr.X = "gaussauto", metr.Y = "gaussauto") # Gaussian distance with bandwidth choice based on median heuristic distcov(X, Y, metr.X = c("alpha", 0.5), metr.Y = c("alpha", 0.5)) # alpha distance covariance with alpha = 0.5. #Define a user-specified (slow) version of the alpha metric alpha_user <- function(X, prm = 1, kernel = FALSE) { as.matrix(dist(X)) ^ prm } distcov(X, Y, metr.X = c("alpha", 0.5), metr.Y = c("alpha", 0.5)) # Gives the same result as before. #User-specified Gaussian kernel function gauss_kernel <- function(X, prm = 1, kernel = TRUE) { exp(as.matrix(dist(X)) ^ 2 / 2 / prm ^ 2) } distcov(X, Y, metr.X = c("gauss_kernel", 2), metr.Y = c("gauss_kernel", 2)) # calculates the distance covariance using the corresponding kernel-induced metric distcov(X, Y, metr.X = c("gaussian", 2), metr.Y = c("gaussian", 2)) # same result Y <- matrix(nrow = 100, ncol = 2) X <- rnorm(300) dim(X) <- c(100, 3) Z <- rnorm(100) Y <- matrix(nrow = 100, ncol = 2) Y[, 1] <- X[, 1] + Z Y[, 2] <- 3 * Z distcov(X, Y) distcov(X, Y, affine = TRUE) # affinely invariant distance covariance distcov(X, Y, standardize = TRUE) ## distance covariance standardizing the components of X and Y
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.