Nothing
#' Estimator for the Flexible Partially Linear IV Model.
#'
#' @family ddml
#'
#' @seealso [ddml::summary.ddml_fpliv()], [AER::ivreg()]
#'
#' @description Estimator for the flexible partially linear IV model.
#'
#' @details \code{ddml_fpliv} provides a double/debiased machine learning
#' estimator for the parameter of interest \eqn{\theta_0} in the partially
#' linear IV model given by
#'
#' \eqn{Y = \theta_0D + g_0(X) + U,}
#'
#' where \eqn{(Y, D, X, Z, U)} is a random vector such that
#' \eqn{E[U\vert X, Z] = 0} and \eqn{E[Var(E[D\vert X, Z]\vert X)] \neq 0},
#' and \eqn{g_0} is an unknown nuisance function.
#'
#' @inheritParams ddml_pliv
#' @param Z A (sparse) matrix of instruments.
#' @param learners_DXZ,learners_DX Optional arguments to allow for different
#' estimators of \eqn{E[D \vert X, Z]}, \eqn{E[D \vert X]}. Setup is
#' identical to \code{learners}.
#' @param custom_ensemble_weights_DXZ,custom_ensemble_weights_DX Optional
#' arguments to allow for different
#' custom ensemble weights for \code{learners_DXZ},\code{learners_DX}. Setup
#' is identical to \code{custom_ensemble_weights}. Note:
#' \code{custom_ensemble_weights} and
#' \code{custom_ensemble_weights_DXZ},\code{custom_ensemble_weights_DX} must
#' have the same number of columns.
#' @param enforce_LIE Indicator equal to 1 if the law of iterated expectations
#' is enforced in the first stage.
#'
#' @return \code{ddml_fpliv} returns an object of S3 class
#' \code{ddml_fpliv}. An object of class \code{ddml_fpliv} is a list
#' containing the following components:
#' \describe{
#' \item{\code{coef}}{A vector with the \eqn{\theta_0} estimates.}
#' \item{\code{weights}}{A list of matrices, providing the weight
#' assigned to each base learner (in chronological order) by the
#' ensemble procedure.}
#' \item{\code{mspe}}{A list of matrices, providing the MSPE of each
#' base learner (in chronological order) computed by the
#' cross-validation step in the ensemble construction.}
#' \item{\code{iv_fit}}{Object of class \code{ivreg} from the IV
#' regression of \eqn{Y - \hat{E}[Y\vert X]} on
#' \eqn{D - \hat{E}[D\vert X]} using
#' \eqn{\hat{E}[D\vert X,Z] - \hat{E}[D\vert X]} as the instrument.}
#' \item{\code{learners},\code{learners_DX},\code{learners_DXZ},
#' \code{cluster_variable},\code{subsamples},
#' \code{cv_subsamples_list},\code{ensemble_type}}{Pass-through of
#' selected user-provided arguments. See above.}
#' }
#' @export
#'
#' @references
#' Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased
#' machine learning in Stata." \url{https://arxiv.org/abs/2301.09397}
#'
#' Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C B, Newey W,
#' Robins J (2018). "Double/debiased machine learning for treatment and
#' structural parameters." The Econometrics Journal, 21(1), C1-C68.
#'
#' Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.
#'
#' @examples
#' # Construct variables from the included Angrist & Evans (1998) data
#' y = AE98[, "worked"]
#' D = AE98[, "morekids"]
#' Z = AE98[, "samesex", drop = FALSE]
#' X = AE98[, c("age","agefst","black","hisp","othrace","educ")]
#'
#' # Estimate the partially linear IV model using a single base learner: Ridge.
#' fpliv_fit <- ddml_fpliv(y, D, Z, X,
#' learners = list(what = mdl_glmnet,
#' args = list(alpha = 0)),
#' sample_folds = 2,
#' silent = TRUE)
#' summary(fpliv_fit)
ddml_fpliv <- function(y, D, Z, X,
learners,
learners_DXZ = learners,
learners_DX = learners,
sample_folds = 10,
ensemble_type = "nnls",
shortstack = FALSE,
cv_folds = 10,
enforce_LIE = TRUE,
custom_ensemble_weights = NULL,
custom_ensemble_weights_DXZ = custom_ensemble_weights,
custom_ensemble_weights_DX = custom_ensemble_weights,
cluster_variable = seq_along(y),
subsamples = NULL,
cv_subsamples_list = NULL,
silent = FALSE) {
# Data parameters
nobs <- length(y)
nensb_raw <- length(ensemble_type) # number of ensembles w/o custom weights
# Check for multivariate endogenous variables
D <- as.matrix(D)
nD <- ncol(D)
# Create sample and cv-fold tuples
cf_indxs <- get_crossfit_indices(cluster_variable = cluster_variable,
sample_folds = sample_folds,
cv_folds = cv_folds,
subsamples = subsamples,
cv_subsamples_list = cv_subsamples_list)
# Print to progress to console
if (!silent) cat("DDML estimation in progress. \n")
# Compute estimates of E[y|X]
y_X_res <- get_CEF(y, X, Z = NULL,
learners = learners, ensemble_type = ensemble_type,
shortstack = shortstack,
custom_ensemble_weights = custom_ensemble_weights,
subsamples = cf_indxs$subsamples,
cv_subsamples_list = cf_indxs$cv_subsamples_list,
compute_insample_predictions = F,
silent = silent, progress = "E[Y|X]: ")
# Compute estimates of E[D|X,Z]. Also calculate in-sample predictions when
# the LIE is enforced.
D_XZ_res_list <- list()
for (k in 1:nD) {
D_XZ_res_list[[k]] <- get_CEF(D[, k, drop = F], X, Z,
learners = learners_DXZ,
ensemble_type = ensemble_type,
shortstack = shortstack,
custom_ensemble_weights =
custom_ensemble_weights_DXZ,
subsamples = cf_indxs$subsamples,
cv_subsamples_list =
cf_indxs$cv_subsamples_list,
compute_insample_predictions = enforce_LIE,
silent = silent,
progress = paste0("E[D", k, "|X,Z]: "))
}#FOR
# When the LIE is not enforced, estimating E[D|X] is straightforward.
if (!enforce_LIE) {
D_X_res_list <- list()
for (k in 1:nD) {
D_X_res_list[[k]] <- get_CEF(D[, k, drop = F], X, Z = NULL,
learners = learners_DX,
ensemble_type = ensemble_type,
shortstack = shortstack,
custom_ensemble_weights =
custom_ensemble_weights_DX,
subsamples = cf_indxs$subsamples,
cv_subsamples_list =
cf_indxs$cv_subsamples_list,
compute_insample_predictions = F,
silent = silent,
progress = paste0("E[D", k, "|X]: "))
}#FOR
}#IF
# Update ensemble type to account for (optional) custom weights
ensemble_type <- dimnames(y_X_res$weights)[[2]]
nensb <- length(ensemble_type)
# Check whether multiple ensembles are computed simultaneously
multiple_ensembles <- nensb > 1
# If a single ensemble is calculated, no loops are required.
if (!multiple_ensembles) {
# Check whether the law of iterated expectations (LIE) should be enforced.
# When the LIE is enforced (recommended), the estimates of E[D|X,Z] are
# used for the calculation of the estimates of E[D|X].
if (enforce_LIE) {
D_X_res_list <- list()
for (k in 1:nD) {
D_X_res_list[[k]] <-
get_CEF(D_XZ_res_list[[k]]$is_fitted, X, Z = NULL,
learners = learners_DX,
ensemble_type = ensemble_type,
shortstack = shortstack,
subsamples = cf_indxs$subsamples,
cv_subsamples_list = cf_indxs$cv_subsamples_list,
compute_insample_predictions = F,
silent = silent,
progress = paste0("E[D", k, "|X]: "),
shortstack_y = D_XZ_res_list[[k]]$oos_fitted)
}#FOR
}#IFELSE
# Residualize
y_r <- y - y_X_res$oos_fitted
D_r <- D - get_oosfitted(D_X_res_list)
V_r <- get_oosfitted(D_XZ_res_list) - get_oosfitted(D_X_res_list)
# Compute IV estimate with constructed variables
iv_fit <- AER::ivreg(y_r ~ D_r | V_r)
# Organize complementary ensemble output
coef <- stats::coef(iv_fit)[-1]
}#IF
# If multiple ensembles are calculated, iterate over each type.
if (multiple_ensembles) {
# Iterate over ensemble type. Compute DDML IV estimate for each.
coef <- matrix(0, nD, nensb)
iv_fit <- rep(list(1), nensb)
nlearners <- length(learners)
nlearners_DX <- length(learners_DX); nlearners_DXZ <- length(learners_DXZ)
# Assign names for more legible output
colnames(coef) <- names(iv_fit) <- ensemble_type
# Create intermediate weight matrices for enforce_LIE = TRUE
if (enforce_LIE) {
# weights
weights_DX <- array(0, dim = c(nlearners_DX, nensb, sample_folds))
dimnames(weights_DX) <- dimnames(y_X_res$weights)
weights_DX <- replicate(nD, weights_DX, simplify = FALSE)
}#IF
# Compute coefficients for each ensemble
for (j in 1:nensb) {
# When the LIE is enforced, compute LIE-conform estimates of E[D|X].
# Otherwise use the previously calculated estimates of E[D|X].
if (enforce_LIE) {
D_X_res_list <- list()
for (k in 1:nD) {
progress_jk <- paste0("E[D", k, "|X] (", ensemble_type[j], "): ")
# Check whether j is a custom ensemble specification. Necessary to
# assign correct corresponding custom_weights vector.
if (j <= nensb_raw) { # j is not a custom specification
D_X_res_list[[k]] <-
get_CEF(D_XZ_res_list[[k]]$is_fitted[[j]], X, Z = NULL,
learners = learners_DX,
ensemble_type = ensemble_type[j],
shortstack = shortstack,
subsamples = cf_indxs$subsamples,
cv_subsamples_list = cf_indxs$cv_subsamples_list,
compute_insample_predictions = F,
silent = silent,
progress = progress_jk,
shortstack_y = D_XZ_res_list[[k]]$oos_fitted[, j])
} else { # j is a custom specification
D_X_res_list[[k]] <-
get_CEF(D_XZ_res_list[[k]]$is_fitted[[j]], X, Z = NULL,
learners = learners_DX,
ensemble_type = "average",
shortstack = shortstack,
custom_ensemble_weights =
custom_ensemble_weights_DX[, j - nensb_raw, drop = F],
subsamples = cf_indxs$subsamples,
cv_subsamples_list = cf_indxs$cv_subsamples_list,
compute_insample_predictions = F,
silent = silent,
progress = progress_jk,
shortstack_y = D_XZ_res_list[[k]]$oos_fitted[, j])
# Remove "average" oos_fitted and weights
D_X_res_list[[k]]$oos_fitted <- D_X_res_list[[k]]$oos_fitted[, -1]
D_X_res_list[[k]]$weights <- D_X_res_list[[k]]$weights[, -1, ,
drop = F]
}#IFELSE
}#FOR
}#IF
# Residualize
if (enforce_LIE) {
D_r <- D - get_oosfitted(D_X_res_list)
V_r <- get_oosfitted(D_XZ_res_list, j) - get_oosfitted(D_X_res_list)
} else {
D_r <- D - get_oosfitted(D_X_res_list, j)
V_r <- get_oosfitted(D_XZ_res_list, j) - get_oosfitted(D_X_res_list, j)
}#IFELSE
# Residualize y
y_r <- y - y_X_res$oos_fitted[, j]
# Compute IV estimate with constructed variables
iv_fit_j <- AER::ivreg(y_r ~ D_r | V_r)
# Organize complementary ensemble output
coef[, j] <- stats::coef(iv_fit_j)[-1]
iv_fit[[j]] <- iv_fit_j
if (enforce_LIE) {
for (k in 1:nD) weights_DX[[k]][, j, ] <- D_X_res_list[[k]]$weights
}#IF
}#FOR
}#IF
# Store complementary ensemble output
weights <- list(y_X = y_X_res$weights)
mspe <- list(y_X = y_X_res$mspe)
for (k in 1:nD){
if (enforce_LIE & multiple_ensembles) {
weights[[paste0("D", k, "_X")]] <- weights_DX[[k]]
} else {
weights[[paste0("D", k, "_X")]] <- D_X_res_list[[k]]$weights
}#IFELSE
#mspe[[paste0("D", k, "_X")]] <- D_X_res_list[[k]]$mspe
}#FOR
for (k in 1:nD){
weights[[paste0("D", k, "_XZ")]] <- D_XZ_res_list[[k]]$weights
mspe[[paste0("D", k, "_XZ")]] <- D_XZ_res_list[[k]]$mspe
}#FOR
# Organize output
ddml_fit <- list(coef = coef, weights = weights, mspe = mspe,
learners = learners,
learners_DXZ = learners_DXZ,
learners_DX = learners_DX,
iv_fit = iv_fit,
cluster_variable = cluster_variable,
subsamples = subsamples,
cv_subsamples_list = cv_subsamples_list,
ensemble_type = ensemble_type,
enforce_LIE = enforce_LIE)
# Print estimation progress
if (!silent) cat("DDML estimation completed. \n")
# Amend class and return
class(ddml_fit) <- "ddml_fpliv"
return(ddml_fit)
}#DDML_FPLIV
#' @rdname summary.ddml_plm
#'
#' @export
summary.ddml_fpliv <- function(object, ...) {
# Check whether stacking was used, replace ensemble type if TRUE
single_learner <- ("what" %in% names(object$learners))
if (single_learner) object$ensemble_type <- "single base learner"
# Compute and print inference results
coefficients <- organize_inf_results(fit_obj_list = object$iv_fit,
ensemble_type = object$ensemble_type,
cluster_variable =
object$cluster_variable,
...)
class(coefficients) <- c("summary.ddml_fpliv", class(coefficients))
coefficients
}#SUMMARY.DDML_FPLIV
#' @rdname print.summary.ddml_plm
#'
#' @export
print.summary.ddml_fpliv <- function(x, digits = 3, ...) {
cat("FPLIV estimation results: \n \n")
class(x) <- class(x)[-1]
print(x, digits = digits)
}#PRINT.SUMMARY.DDML_FPLIV
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.