Nothing
test_that("ddml_fpliv computes with a single model", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols))
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 1)
})#TEST_THAT
test_that("ddml_fpliv computes with a single model and dependence", {
# Simulate small dataset
n_cluster <- 250
nobs <- 500
X <- cbind(1, matrix(rnorm(n_cluster*39), n_cluster, 39))
Z_tld <- X %*% runif(40) + rnorm(n_cluster)
fun <- stepfun(quantile(Z_tld, probs = 0.5), c(0, 1))
Z <- fun(Z_tld)
cluster_variable <- sample(1:n_cluster, nobs, replace = TRUE)
Z <- as.matrix(Z[cluster_variable, drop = F])
X <- X[cluster_variable, , drop = F]
eps <- rnorm(nobs)
D <- Z + X %*% runif(40) + eps
y <- D + X %*% runif(40) + 0.1 * eps + rnorm(nobs)
# Define arguments
learners <- list(list(fun = ols))
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
cluster_variable = cluster_variable,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 1)
})#TEST_THAT
test_that("ddml_fpliv computes with an ensemble procedure", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = "ols",
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 1)
})#TEST_THAT
test_that("ddml_fpliv computes with stacking w/o enforcing the LIE", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = "ols",
sample_folds = 3,
cv_folds = 3,
enforce_LIE = FALSE,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 1)
})#TEST_THAT
test_that("ddml_fpliv computes with multiple ensemble procedures", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 4)
})#TEST_THAT
test_that("ddml_fpliv computes with custom weights", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = c("average"),
cv_folds = 3,
custom_ensemble_weights = diag(1, 2),
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 3)
})#TEST_THAT
test_that("ddml_fpliv computes with multiple ensembles w/o the LIE", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
enforce_LIE = FALSE,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 4)
})#TEST_THAT
test_that("ddml_fpliv computes with multiple ensembles and sparse matrices", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D,
Z = as(Z, "sparseMatrix"),
X = as(X, "sparseMatrix"),
learners = learners,
ensemble_type = c("ols", "nnls",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 4)
})#TEST_THAT
test_that("ddml_fpliv computes with different sets of learners", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols),
list(fun = ols))
learners_DXZ <- list(list(fun = ols),
list(fun = ols))
learners_DX <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
learners_DXZ = learners_DXZ,
learners_DX = learners_DX,
ensemble_type = c("ols", "nnls",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 4)
})#TEST_THAT
test_that("ddml_fpliv computes w/ ensembles & shortstack", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"singlebest", "average"),
shortstack = T,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 4)
})#TEST_THAT
test_that("ddml_fpliv computes w/ ensembles & shortstack but w/o the LIE ", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
enforce_LIE = FALSE,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 4)
})#TEST_THAT
test_that("summary.ddml_fpliv computes with a single model", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(what = ols)
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
sample_folds = 3,
silent = T)
inf_res <- summary(ddml_fpliv_fit, type = "HC1")
capture_output(print(inf_res), print = FALSE)
# Check output with expectations
expect_equal(length(inf_res), 8)
})#TEST_THAT
test_that("ddml_fpliv computes with an ensemble procedure, multi D", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- cbind(X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1], rnorm(nobs))
y <- rowSums(D) + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = "ols",
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 2)
})#TEST_THAT
test_that("ddml_fpliv computes with an ensemble procedure w/o LIE, multi D", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- cbind(X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1], rnorm(nobs))
y <- rowSums(D) + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = "ols",
cv_folds = 3,
sample_folds = 3,
enforce_LIE = F,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 2)
})#TEST_THAT
test_that("ddml_fpliv computes with multiple ensemble procedures, multi D", {
# Simulate small dataset
nobs <- 100
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- cbind(X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1],
X %*% runif(40) + Z %*% c(1, runif(9)) + rnorm(nobs))
y <- rowSums(D) + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 5,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 8)
})#TEST_THAT
test_that("ddml_fpliv computes with ensemble procedures w/o LIE, multi D", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs*10), nobs, 10)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- cbind(X %*% runif(40) + Z %*% c(1, runif(9)) + UV[, 1], rnorm(nobs))
y <- rowSums(D) + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
enforce_LIE = F,
silent = T)
# Check output with expectations
expect_equal(length(ddml_fpliv_fit$coef), 8)
})#TEST_THAT
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.