Nothing
test_that("ddml_late computes with a single model", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z_tld <- X %*% runif(40) + rnorm(nobs)
Z <- 1 * (Z_tld > mean(Z_tld))
D_tld <- 0.5 * (1 - 2 * Z) + 0.2 * X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(what = ols)
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners = learners,
cv_folds = 3,
sample_folds = 3,
silent = T)
})
# Check output with expectations
expect_equal(length(ddml_late_fit$late), 1)
})#TEST_THAT
test_that("ddml_late computes with a single model and dependence", {
# Simulate small dataset
n_cluster <- 250
nobs <- 500
X <- cbind(1, matrix(rnorm(n_cluster*39), n_cluster, 39))
Z_tld <- X %*% runif(40) + rnorm(n_cluster)
fun <- stepfun(quantile(Z_tld, probs = 0.5), c(0, 1))
Z <- fun(Z_tld)
cluster_variable <- sample(1:n_cluster, nobs, replace = TRUE)
Z <- Z[cluster_variable, drop = F]
X <- X[cluster_variable, , drop = F]
eps <- rnorm(nobs)
D <- Z + X %*% runif(40) + eps
y <- D + X %*% runif(40) + 0.1 * eps + rnorm(nobs)
# Define arguments
learners <- list(what = ols)
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners = learners,
cluster_variable = cluster_variable,
cv_folds = 3,
sample_folds = 3,
silent = T)
})
# Check output with expectations
expect_equal(length(ddml_late_fit$late), 1)
})#TEST_THAT
test_that("ddml_late computes with a single model & perfect non-compliance", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z_tld <- X %*% runif(40) + rnorm(nobs)
Z <- 1 * (Z_tld > mean(Z_tld))
D_tld <- 0.5 * (1 - 2 * Z) + 0.2 * X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
D[Z == 0] <- 0
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(what = ols)
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners = learners,
cv_folds = 3,
sample_folds = 3,
silent = T)
})
# Check output with expectations
expect_equal(length(ddml_late_fit$late), 1)
})#TEST_THAT
test_that("ddml_late computes with an ensemble procedure", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z_tld <- X %*% runif(40) + rnorm(nobs)
Z <- 1 * (Z_tld > mean(Z_tld))
D_tld <- 0.25 * (1 - 2 * Z) + 0.2 * X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute DDML PLM estimator
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners = learners,
ensemble_type = "ols",
cv_folds = 3,
sample_folds = 3,
silent = T)
})
# Check output with expectations
expect_equal(length(ddml_late_fit$late), 1)
})#TEST_THAT
test_that("ddml_late computes w/ multiple ensembles & custom weights", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z_tld <- X %*% runif(40) + rnorm(nobs)
Z <- 1 * (Z_tld > mean(Z_tld))
D_tld <- 0.25 * (1 - 2 * Z) + 0.2 * X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute DDML PLM estimator
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
cv_folds = 3,
custom_ensemble_weights = diag(1, 2),
sample_folds = 3,
silent = T)
})
# Check output with expectations
expect_equal(length(ddml_late_fit$late), 7)
})#TEST_THAT
test_that("ddml_late computes with multiple ensemble procedures + perfect compliance", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z_tld <- X %*% runif(40) + rnorm(nobs)
Z <- 1 * (Z_tld > mean(Z_tld))
D_tld <- 0.25 * (1 - 2 * Z) + 0.2 * X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
D[Z == 1] <- 1 # perfect compliance
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute DDML PLM estimator
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
silent = T)
})
# Check output with expectations
expect_equal(length(ddml_late_fit$late), 5)
})#TEST_THAT
test_that("ddml_late computes w/ mult ensembles, custom weights, & shortstack", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z_tld <- X %*% runif(40) + rnorm(nobs)
Z <- 1 * (Z_tld > mean(Z_tld))
D_tld <- 0.25 * (1 - 2 * Z) + 0.2 * X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute DDML PLM estimator
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
shortstack = TRUE,
cv_folds = 3,
custom_ensemble_weights = diag(1, 2),
sample_folds = 3,
silent = T)
})
# Check output with expectations
expect_equal(length(ddml_late_fit$late), 7)
})#TEST_THAT
test_that("summary.ddml_late computes with a single model", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z_tld <- X %*% runif(40) + rnorm(nobs)
Z <- 1 * (Z_tld > mean(Z_tld))
D_tld <- 0.5 * (1 - 2 * Z) + 0.2 * X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(what = ols)
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners = learners,
cv_folds = 3,
sample_folds = 3,
silent = T)
})
# Compute inference results & test print
inf_res <- summary(ddml_late_fit)
capture_output({print(inf_res)}, print = FALSE)
# Check output with expectations
expect_equal(length(inf_res), 4)
})#TEST_THAT
test_that("summary.ddml_late computes with a single model and dependence", {
# Simulate small dataset
n_cluster <- 250
nobs <- 500
X <- cbind(1, matrix(rnorm(n_cluster*39), n_cluster, 39))
Z_tld <- X %*% runif(40) + rnorm(n_cluster)
fun <- stepfun(quantile(Z_tld, probs = 0.5), c(0, 1))
Z <- fun(Z_tld)
cluster_variable <- sample(1:n_cluster, nobs, replace = TRUE)
Z <- Z[cluster_variable, drop = F]
X <- X[cluster_variable, , drop = F]
eps <- rnorm(nobs)
D <- Z + X %*% runif(40) + eps
y <- D + X %*% runif(40) + 0.1 * eps + rnorm(nobs)
# Define arguments
learners <- list(what = ols)
expect_warning({
ddml_late_fit <- ddml_late(y, D, Z, X,
learners = learners,
cluster_variable = cluster_variable,
cv_folds = 3,
sample_folds = 3,
silent = T)
})
# Compute inference results & test print
inf_res <- summary(ddml_late_fit)
capture_output({print(inf_res)}, print = FALSE)
# Check output with expectations
expect_equal(length(inf_res), 4)
})#TEST_THAT
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.