Nothing
test_that("ddml_pliv computes with a single model", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(what = ols)
# Compute DDML PLIV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 1)
})#TEST_THAT
test_that("ddml_pliv computes with a single model and dependence", {
# Simulate small dataset
n_cluster <- 250
nobs <- 500
X <- cbind(1, matrix(rnorm(n_cluster*39), n_cluster, 39))
Z_tld <- X %*% runif(40) + rnorm(n_cluster)
fun <- stepfun(quantile(Z_tld, probs = c(0.5)), c(0, 1))
Z <- fun(Z_tld)
cluster_variable <- sample(1:n_cluster, nobs, replace = TRUE)
Z <- Z[cluster_variable, drop = F]
X <- X[cluster_variable, , drop = F]
eps <- rnorm(nobs)
D <- Z + X %*% runif(40) + eps
y <- D + X %*% runif(40) + 0.1 * eps + rnorm(nobs)
# Define arguments
learners <- list(what = ols)
# Compute DDML PLIV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 1)
})#TEST_THAT
test_that("ddml_pliv computes with an ensemble procedure", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
ensemble_type = "ols",
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 1)
})#TEST_THAT
test_that("ddml_pliv computes with multiple ensemble procedures", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 5)
})#TEST_THAT
test_that("ddml_pliv computes with different sets of learners", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols),
list(fun = ols))
learners_ZX <- list(list(fun = ols),
list(fun = ols))
learners_DX <- list(list(fun = ols),
list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
learners_ZX = learners_ZX,
learners_DX = learners_DX,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 5)
})#TEST_THAT
test_that("ddml_pliv computes with different sets of learners & shortstack", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols),
list(fun = ols))
learners_ZX <- list(list(fun = ols),
list(fun = ols))
learners_DX <- list(list(fun = ols),
list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
learners_ZX = learners_ZX,
learners_DX = learners_DX,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
shortstack = T,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 5)
})#TEST_THAT
test_that("summary.ddml_pliv computes with a single model", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(what = ols)
# Compute DDML PLIV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
sample_folds = 3,
silent = T)
inf_res <- summary(ddml_pliv_fit, type = "HC1")
capture_output(print(inf_res), print = FALSE)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 1)
})#TEST_THAT
test_that("summary.ddml_pliv computes with custom ensemble weights", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1]
y <- D + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute DDML PLIV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
sample_folds = 3,
custom_ensemble_weights = diag(1, 2),
silent = T)
inf_res <- summary(ddml_pliv_fit, type = "HC1")
capture_output(print(inf_res), print = FALSE)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 3)
})#TEST_THAT
test_that("ddml_pliv computes with a single model and multivariate D,Z", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- cbind(X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1], rnorm(nobs))
Z <- cbind(Z, rnorm(nobs))
y <- rowSums(D) + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(what = ols)
# Compute DDML PLIV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 2)
})#TEST_THAT
test_that("ddml_pliv computes with different ensembles and multivariate D,Z", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
Z <- matrix(rnorm(nobs), nobs, 1)
UV <- matrix(rnorm(2*nobs), nobs, 2) %*% chol(matrix(c(1, 0.7, 0.7, 1), 2, 2))
D <- cbind(X %*% runif(40) + Z %*% (1 + runif(1)) + UV[, 1], rnorm(nobs))
Z <- cbind(Z, rnorm(nobs))
y <- rowSums(D) + X %*% runif(40) + UV[, 2]
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute LIE-conform DDML IV estimator
ddml_pliv_fit <- ddml_pliv(y, D, Z, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_pliv_fit$coef), 10)
})#TEST_THAT
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.