Nothing
test_that("ddml_plm computes with a single model", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D_tld <- X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(what = mdl_glmnet,
args = list(alpha = 0.5))
ddml_plm_fit <- ddml_plm(y, D, X,
learners = learners,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 1)
})#TEST_THAT
test_that("ddml_plm computes with clustered observations", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D_tld <- X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
cluster_variable <- sample(1:100, nobs, replace = T)
# Define arguments
learners <- list(what = mdl_glmnet,
args = list(alpha = 0.5))
ddml_plm_fit <- ddml_plm(y, D, X,
learners = learners,
cv_folds = 3,
sample_folds = 3,
cluster_variable = cluster_variable,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 1)
})#TEST_THAT
test_that("ddml_plm computes with an ensemble procedure", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- X %*% runif(40) + rnorm(nobs)
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = mdl_glmnet,
args = list(alpha = 0.5)),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, X,
learners = learners,
ensemble_type = "ols",
shortstack = FALSE,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 1)
})#TEST_THAT
test_that("ddml_plm computes with multiple ensemble procedures", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- X %*% runif(40) + rnorm(nobs)
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = mdl_glmnet,
args = list(alpha = 0.5)),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
shortstack = FALSE,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 5)
})#TEST_THAT
test_that("ddml_plm computes with multiple ensemble procedures & sparse mats", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- X %*% runif(40) + rnorm(nobs)
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = mdl_glmnet,
args = list(alpha = 0.5)),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, as(X, "sparseMatrix"),
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
shortstack = FALSE,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 5)
})#TEST_THAT
test_that("ddml_plm computes w/ an ensemble procedure & shortstacking", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- X %*% runif(40) + rnorm(nobs)
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = mdl_glmnet,
args = list(alpha = 0.5)),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, X,
learners = learners,
ensemble_type = "ols",
shortstack = TRUE,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 1)
})#TEST_THAT
test_that("ddml_plm computes w/ multiple ensemble procedures & shortstacking", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- X %*% runif(40) + rnorm(nobs)
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = mdl_glmnet,
args = list(alpha = 0.5)),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
shortstack = TRUE,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 5)
})#TEST_THAT
test_that("ddml_plm computes w/ ensemble procedures & custom weights", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- X %*% runif(40) + rnorm(nobs)
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = ols),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
shortstack = TRUE,
cv_folds = 3,
custom_ensemble_weights = diag(1, length(learners)),
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 7)
})#TEST_THAT
test_that("summary.ddml_plm computes with a single model", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D_tld <- X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(what = mdl_glmnet,
args = list(alpha = 0.5))
ddml_plm_fit <- ddml_plm(y, D, X,
learners = learners,
cv_folds = 3,
sample_folds = 3,
silent = T)
inf_res <- summary(ddml_plm_fit, type = "HC1")
capture_output(print(inf_res), print = FALSE)
# Check output with expectations
expect_equal(length(inf_res), 8)
})#TEST_THAT
test_that("summary.ddml_plm computes with a single model and dependence", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D_tld <- X %*% runif(40) + rnorm(nobs)
D <- 1 * (D_tld > mean(D_tld))
y <- D + X %*% runif(40) + rnorm(nobs)
cluster_variable <- sample(1:100, nobs, replace = T)
# Define arguments
learners <- list(what = mdl_glmnet,
args = list(alpha = 0.5))
ddml_plm_fit <- ddml_plm(y, D, X,
learners = learners,
cv_folds = 3,
sample_folds = 3,
cluster_variable = cluster_variable,
silent = T)
inf_res <- summary(ddml_plm_fit)
capture_output(print(inf_res), print = FALSE)
# Check output with expectations
expect_equal(length(inf_res), 8)
})#TEST_THAT
test_that("summary.ddml_plm computes with multiple ensemble procedures", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- X %*% runif(40) + rnorm(nobs)
y <- D + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = mdl_glmnet,
args = list(alpha = 0.5)),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
shortstack = FALSE,
cv_folds = 3,
custom_ensemble_weights = diag(1, length(learners)),
sample_folds = 3,
silent = T)
inf_res <- summary(ddml_plm_fit, type = "HC1")
capture_output(print(inf_res), print = FALSE)
# Check output with expectations
expect_equal(length(inf_res), 8 * 7)
})#TEST_THAT
test_that("ddml_plm computes with an ensemble procedure and multivariate D", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- cbind(X %*% runif(40) + rnorm(nobs), rnorm(nobs))
y <- rowSums(D) + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = mdl_glmnet,
args = list(alpha = 0.5)),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, X,
learners = learners,
ensemble_type = "ols",
shortstack = FALSE,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 2)
})#TEST_THAT
test_that("ddml_plm computes with multiple ensemble types and multivariate D", {
# Simulate small dataset
nobs <- 200
X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39))
D <- cbind(X %*% runif(40) + rnorm(nobs), rnorm(nobs))
y <- rowSums(D) + X %*% runif(40) + rnorm(nobs)
# Define arguments
learners <- list(list(fun = mdl_glmnet,
args = list(alpha = 0.5)),
list(fun = ols))
# Compute DDML PLM estimator
ddml_plm_fit <- ddml_plm(y, D, X,
learners,
ensemble_type = c("ols", "nnls",
"nnls1",
"singlebest", "average"),
shortstack = FALSE,
cv_folds = 3,
sample_folds = 3,
silent = T)
# Check output with expectations
expect_equal(length(ddml_plm_fit$coef), 10)
})#TEST_THAT
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.