Nothing
test_that("difORD - examples at help page", {
# skip_on_cran()
# skip_on_os("linux")
# loading data
data(Anxiety, package = "ShinyItemAnalysis")
Data <- Anxiety[, paste0("R", 1:29)] # items
group <- Anxiety[, "gender"] # group membership variable
# testing both DIF effects with adjacent category logit model
expect_snapshot((fit1 <- difORD(Data, group, focal.name = 1, model = "adjacent")))
# saveRDS(fit1, file = "tests/testthat/fixtures/difORD_fit1.rds")
fit1_expected <- readRDS(test_path("fixtures", "difORD_fit1.rds"))
expect_equal(fit1, fit1_expected)
# graphical devices
fit1_plot1 <- plot(fit1, item = 6)[[1]]
vdiffr::expect_doppelganger("difORD_fit1_plot1", fit1_plot1)
fit1_plot2 <- plot(fit1, item = "R6")[[1]]
vdiffr::expect_doppelganger("difORD_fit1_plot2", fit1_plot2)
fit1_plot3 <- plot(fit1, item = "R6", group.names = c("Males", "Females"))[[1]]
vdiffr::expect_doppelganger("difORD_fit1_plot3", fit1_plot3)
# estimated parameters
# saveRDS(coef(fit1), file = "tests/testthat/fixtures/difORD_fit1_coef1.rds")
fit1_coef1_expected <- readRDS(test_path("fixtures", "difORD_fit1_coef1.rds"))
expect_equal(coef(fit1), fit1_coef1_expected)
# saveRDS(coef(fit1, SE = TRUE), file = "tests/testthat/fixtures/difORD_fit1_coef2.rds")
fit1_coef2_expected <- readRDS(test_path("fixtures", "difORD_fit1_coef2.rds"))
expect_equal(coef(fit1, SE = TRUE), fit1_coef2_expected) # with SE
# saveRDS(coef(fit1, SE = TRUE, simplify = TRUE), file = "tests/testthat/fixtures/difORD_fit1_coef3.rds")
fit1_coef3_expected <- readRDS(test_path("fixtures", "difORD_fit1_coef3.rds"))
expect_equal(coef(fit1, SE = TRUE, simplify = TRUE), fit1_coef3_expected) # with SE, simplified
# AIC, BIC, log-likelihood
expect_snapshot(AIC(fit1))
expect_snapshot(BIC(fit1))
expect_snapshot(logLik(fit1))
# AIC, BIC, log-likelihood for the first item
expect_snapshot(AIC(fit1, item = 1))
expect_snapshot(BIC(fit1, item = 1))
expect_snapshot(logLik(fit1, item = 1))
# testing both DIF effects with Benjamini-Hochberg adjustment method
expect_snapshot((fit2 <- difORD(Data, group, focal.name = 1, model = "adjacent", p.adjust.method = "BH")))
# saveRDS(fit2, file = "tests/testthat/fixtures/difORD_fit2.rds")
fit2_expected <- readRDS(test_path("fixtures", "difORD_fit2.rds"))
expect_equal(fit2, fit2_expected)
# testing both DIF effects with item purification
expect_snapshot((fit3 <- difORD(Data, group, focal.name = 1, model = "adjacent", purify = TRUE)))
# saveRDS(fit3, file = "tests/testthat/fixtures/difORD_fit3.rds")
fit3_expected <- readRDS(test_path("fixtures", "difORD_fit3.rds"))
expect_equal(fit3, fit3_expected)
# testing uniform DIF effects
expect_snapshot((fit4 <- difORD(Data, group, focal.name = 1, model = "adjacent", type = "udif")))
# saveRDS(fit4, file = "tests/testthat/fixtures/difORD_fit4.rds")
fit4_expected <- readRDS(test_path("fixtures", "difORD_fit4.rds"))
expect_equal(fit4, fit4_expected)
# testing non-uniform DIF effects
expect_snapshot((fit5 <- difORD(Data, group, focal.name = 1, model = "adjacent", type = "nudif")))
# saveRDS(fit5, file = "tests/testthat/fixtures/difORD_fit5.rds")
fit5_expected <- readRDS(test_path("fixtures", "difORD_fit5.rds"))
expect_equal(fit5, fit5_expected)
# testing both DIF effects with total score as matching criterion
expect_snapshot((fit6 <- difORD(Data, group, focal.name = 1, model = "adjacent", match = "score")))
# saveRDS(fit6, file = "tests/testthat/fixtures/difORD_fit6.rds")
fit6_expected <- readRDS(test_path("fixtures", "difORD_fit6.rds"))
expect_equal(fit6, fit6_expected)
# testing both DIF effects with cumulative logit model
expect_snapshot((fit7 <- difORD(Data, group, focal.name = 1, model = "cumulative")))
# saveRDS(fit7, file = "tests/testthat/fixtures/difORD_fit7.rds")
fit7_expected <- readRDS(test_path("fixtures", "difORD_fit7.rds"))
expect_equal(fit7, fit7_expected)
# graphical devices
fit7_plot1 <- plot(fit7, item = 7, plot.type = "cumulative")[[1]]
vdiffr::expect_doppelganger("difORD_fit7_plot1", fit7_plot1)
fit7_plot2 <- plot(fit7, item = 7, plot.type = "category")[[1]]
vdiffr::expect_doppelganger("difORD_fit7_plot2", fit7_plot2)
# estimated parameters
# saveRDS(coef(fit7, simplify = TRUE), file = "tests/testthat/fixtures/difORD_fit7_coef.rds")
fit7_coef_expected <- readRDS(test_path("fixtures", "difORD_fit7_coef.rds"))
expect_equal(coef(fit7, simplify = TRUE), fit7_coef_expected)
})
test_that("difORD - checking inputs", {
# skip_on_cran()
# skip_on_os("linux")
# loading data
data(Anxiety, package = "ShinyItemAnalysis")
Data <- Anxiety[, paste0("R", 1:29)] # items
group <- Anxiety[, "gender"] # group membership variable
# different dimensions
expect_error(difORD(Data, group[-c(1:3)], focal.name = 1))
expect_error(difORD(Data, group, match = group[-c(1:3)], focal.name = 1))
expect_error(difORD(Data[1:765, 1:2], group, focal.name = 1))
expect_error(difORD(Data[1:765, 1], group, focal.name = 1))
expect_error(difORD(Data, group, focal.name = 1, match = rnorm(765)))
# too many NAs
expect_error(difORD(Data = matrix(NA, ncol = 2, nrow = 766), group, focal.name = 1))
expect_error(difORD(
Data = cbind(c(Data[1:750, 1], rep(NA, 16)), c(Data[1:750, 2], rep(NA, 16))),
group = c(rep(NA, 750), group[1:16]), focal.name = 1
))
# invalid model
expect_error(difORD(Data, group, focal.name = 1, model = "5PL"))
# invalid type of DIF
expect_error(difORD(Data, group, focal.name = 1, type = "xxx"))
# invalid match
expect_error(difORD(Data, group, focal.name = 1, match = "dscore"))
# invalid significance level
expect_error(difORD(Data, group, focal.name = 1, alpha = 30))
# deprecated parametrization
expect_warning(difORD(Data, group, focal.name = 1, parametrization = "is"))
# invalid combination of purification and matching
expect_error(difORD(Data, group, focal.name = 1, match = Anxiety$zscore, purify = TRUE))
# different ways to input group
fit1 <- difORD(Data, group, focal.name = 1)
fit2 <- difORD(Anxiety[, c("gender", paste0("R", 1:29))], "gender", focal.name = 1)
fit3 <- difORD(Anxiety[, c("gender", paste0("R", 1:29))], 1, focal.name = 1)
expect_equal(fit1, fit2)
expect_equal(fit1, fit3)
# invalid group
set.seed(42)
expect_error(difORD(Data, rbinom(nrow(Data), 4, prob = runif(nrow(Data))), focal.name = 1))
# invalid dimensions
expect_error(difORD(Data[-c(1:4), 1:2], group, match = Anxiety$zscore, focal.name = 1))
expect_error(difORD(Data[-c(1:4), ], group, focal.name = 1))
})
test_that("difORD S3 methods - checking inputs", {
# skip_on_cran()
# skip_on_os("linux")
# loading data
data(Anxiety, package = "ShinyItemAnalysis")
Data <- Anxiety[, paste0("R", 1:29)] # items
group <- Anxiety[, "gender"] # group membership variable
fit1 <- difORD(Data, group, focal.name = 1)
# plot - invalid item argument
expect_error(plot(fit1, item = "Item25")[[1]])
expect_error(plot(fit1, item = 33)[[1]])
expect_error(plot(fit1, item = list("Item2"))[[1]])
expect_error(plot(fit1, item = c(1, 42))[[1]])
# plot - invalid length of group.names
expect_warning(plot(fit1, item = 3, group.names = letters[1:3])[[1]])
expect_warning(plot(fit1, item = 3, group.names = letters[1])[[1]])
# coef - invalid SE
expect_error(coef(fit1, SE = "yes"))
# coef - invalid simplify
expect_error(coef(fit1, simplify = "no"))
# coef - invalid IRTpars
expect_error(coef(fit1, IRTpars = list()))
# coef - invalid CI
expect_error(coef(fit1, CI = 95))
# logLik - invalid item
expect_error(logLik(fit1, item = "Item25"))
expect_error(logLik(fit1, item = 33))
expect_error(logLik(fit1, item = list("Item2")))
expect_error(logLik(fit1, item = c(1, 42)))
# AIC - invalid item
expect_error(AIC(fit1, item = "Item25"))
expect_error(AIC(fit1, item = 33))
expect_error(AIC(fit1, item = list("Item2")))
expect_error(AIC(fit1, item = c(1, 42)))
# BIC - invalid item
expect_error(BIC(fit1, item = "Item25"))
expect_error(BIC(fit1, item = 33))
expect_error(BIC(fit1, item = list("Item2")))
expect_error(BIC(fit1, item = c(1, 42)))
# predict - invalid item
expect_error(predict(fit1, item = "Item25"))
expect_error(predict(fit1, item = 33))
expect_error(predict(fit1, item = list("Item2")))
expect_error(predict(fit1, item = c(1, 42)))
# predict - invalid dimensions
expect_error(predict(fit1, item = "Item2", group = c(0, 1), match = c(-1, 0, 1)))
})
test_that("testing paper code - R Journal 2020 - generated data", {
# skip_on_cran()
# skip_on_os("linux")
set.seed(42)
# discrimination
a <- matrix(rep(runif(5, 0.25, 1), 8), ncol = 8)
# difficulty
b <- t(sapply(1:5, function(i) rep(sort(runif(4, -1, 1)), 2)))
b[1, 5:8] <- b[1, 5:8] + 0.1
a[2, 5:8] <- a[2, 5:8] - 0.2
DataORD <- genNLR(N = 1000, itemtype = "ordinal", a = a, b = b)
expect_snapshot(summary(DataORD))
expect_snapshot((fit1 <- difORD(DataORD, group = "group", focal.name = 1, model = "cumulative")))
# saveRDS(fit1, file = "tests/testthat/fixtures/difORD_RJournal_fit1.rds")
fit1_expected <- readRDS(test_path("fixtures", "difORD_RJournal_fit1.rds"))
expect_equal(fit1, fit1_expected)
fit1_plot1 <- plot(fit1, item = "Item1", plot.type = "cumulative")[[1]]
vdiffr::expect_doppelganger("difORD_RJournal_fit1_plot1", fit1_plot1)
fit1_plot2 <- plot(fit1, item = "Item1", plot.type = "category")[[1]]
vdiffr::expect_doppelganger("difORD_RJournal_fit1_plot2", fit1_plot2)
expect_snapshot((fit2 <- difORD(DataORD, group = 6, focal.name = 1, model = "adjacent")))
# saveRDS(fit2, file = "tests/testthat/fixtures/difORD_RJournal_fit2.rds")
fit2_expected <- readRDS(test_path("fixtures", "difORD_RJournal_fit2.rds"))
expect_equal(fit2, fit2_expected)
fit2_plot <- plot(fit2, item = fit2$DIFitems)
vdiffr::expect_doppelganger("difORD_RJournal_fit2_plot1", fit2_plot[[1]])
vdiffr::expect_doppelganger("difORD_RJournal_fit2_plot2", fit2_plot[[2]])
expect_snapshot(coef(fit2)[[1]])
expect_snapshot(coef(fit2, IRTpars = FALSE)[[1]])
})
test_that("testing paper code - R Journal 2020 - LearningToLearn", {
# skip_on_cran()
# skip_on_os("linux")
data(LearningToLearn, package = "ShinyItemAnalysis")
# nominal data for changes between 6th and 9th grade
LtL6_change <- LearningToLearn[, c("track", paste0("Item6", LETTERS[1:8], "_changes"))]
# ordinal data for change between Grade 6 and 9
LtL6_change_ord <- data.frame(
track = LtL6_change$track,
lapply(
LtL6_change[, -1],
function(x) factor(ifelse(x == "10", 0, ifelse(x == "01", 2, 1)))
)
)
expect_snapshot(summary(LtL6_change_ord[, 1:4]))
# standardized total score achieved in Grade 6
zscore6 <- LearningToLearn$score_6
expect_snapshot((fitex5 <- difORD(
Data = LtL6_change_ord, group = "track", focal.name = "AS",
model = "adjacent", match = zscore6
)))
expect_equal(fitex5$DIFitems, c(2, 4, 5))
plot1 <- plot(fitex5, item = fitex5$DIFitems)
vdiffr::expect_doppelganger("ddfMLR_RJournal_plot5", plot1[[1]])
vdiffr::expect_doppelganger("ddfMLR_RJournal_plot6", plot1[[2]])
vdiffr::expect_doppelganger("ddfMLR_RJournal_plot7", plot1[[3]])
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.