R/autoencoder.R

## #' AutoEncoder
## #'
## #' An S4 Class implementing an Autoencoder
## #'
## #' Autoencoders are neural networks that try to reproduce their input. Consider
## #' this method unstable, as the internals may still be changed.
## #'
## #' @template dimRedMethodSlots
## #'
## #' @template dimRedMethodGeneralUsage
## #'
## #' @section Parameters:
## #' Autoencoder can take the following parameters:
## #' \describe{
## #'   \item{ndim}{The number of dimensions for reduction.}
## #'   \item{n_hidden}{The number of neurons in the hidden
## #'       layers, the length specifies the number of layers,
## #'       the length must be impair, the middle number must
## #'       be the same as ndim.}
## #'   \item{activation}{The activation functions for the layers,
## #'       one of "tanh", "sigmoid", "relu", "elu", everything
## #'       else will silently be ignored and there will be no
## #'       activation function for the layer.}
## #'   \item{weight_decay}{the coefficient for weight decay,
## #'       set to 0 if no weight decay desired.}
## #'   \item{learning_rate}{The learning rate for gradient descend}
## #'   \item{graph}{Optional: A list of bits and pieces that define the
## #'      autoencoder in tensorflow, see details.}
## #'   \item{keras_graph}{Optional: A list of keras layers that define
## #'      the encoder and decoder, specifying this, will ignore all
## #'      other topology related variables, see details.}
## #'   \item{batchsize}{If NA, all data will be used for training,
## #'       else only a random subset of size batchsize will be used}
## #'   \item{n_steps}{the number of training steps.}
## #' }
## #'
## #' @section Details:
## #' There are several ways to specify an autoencoder, the simplest is to pass the
## #' number of neurons per layer in \code{n_hidden}, this must be a vector of
## #' integers of impair length and it must be symmetric and the middle number must
## #' be equal to \code{ndim}, For every layer an activation function can be
## #' specified with \code{activation}.
## #'
## #' For regularization weight decay can be specified by setting
## #' \code{weight_decay} > 0.
## #'
## #' Currently only a gradient descent optimizer is used, the learning rate can be
## #' specified by setting \code{learning_rate}.
## #' The learner can operate on batches if \code{batchsize} is not \code{NA}.
## #' The number of steps the learner uses is specified using \code{n_steps}.
## #'
## #' @section Further training a model:
## #' If the model did not converge in the first training phase or training with
## #' different data is desired, the \code{\link{dimRedResult}} object may be
## #' passed as \code{autoencoder} parameter; In this case all topology related
## #' parameters will be ignored.
## #'
## #' @section Using Keras layers:
## #' The encoder and decoder part can be specified using a list of \pkg{keras}
## #' layers. This requires a list with two entries, \code{encoder} should contain
## #' a LIST of keras layers WITHOUT the \code{\link[keras]{layer_input}}
## #' that will be concatenated in order to form the encoder part.
## #' \code{decoder} should be
## #' defined accordingly, the output of \code{decoder} must have the same number
## #' of dimensions as the input data.
## #'
## #' @section Using Tensorflow:
## #' The model can be entirely defined in \pkg{tensorflow}, it must contain a
## #' list with the following entries:
## #' \describe{
## #'   \item{encoder}{A tensor that defines the encoder.}
## #'   \item{decoder}{A tensor that defines the decoder.}
## #'   \item{network}{A tensor that defines the reconstruction (encoder + decoder).}
## #'   \item{loss}{A tensor that calculates the loss (network + loss function).}
## #'   \item{in_data}{A \code{placeholder} that points to the data input of
## #'     the network AND the encoder.}
## #'   \item{in_decoder}{A \code{placeholder} that points to the input of
## #'     the decoder.}
## #'   \item{session}{A \pkg{tensorflow} \code{Session} object that holds
## #'     the values of the tensors.}
## #' }
## #'
## #' @section Implementation:
## #' Uses \pkg{tensorflow} as a backend, for details an
## #'   problems relating tensorflow, see \url{https://tensorflow.rstudio.com}.
## #'
## #' @examples
## #' \dontrun{
## #' dat <- loadDataSet("3D S Curve")
## #'
## #' emb <- embed(dat, "AutoEncoder")
## #'
## #' # predicting is possible:
## #' samp <- sample(floor(nrow(dat) / 10))
## #' emb2 <- embed(dat[samp])
## #' emb3 <- predict(emb2, dat[-samp])
## #'
## #' plot(emb, type = "2vars")
## #' plot(emb2, type = "2vars")
## #' points(getData(emb3))
## #' }
## #'
## #' @include dimRedResult-class.R
## #' @include dimRedMethod-class.R
## #' @family dimensionality reduction methods
## #' @export AutoEncoder
## #' @exportClass AutoEncoder
## AutoEncoder <- setClass(
##   "AutoEncoder",
##   contains  = "dimRedMethod",
##   prototype = list(
##     stdpars = list(ndim          = 2,
##                    n_hidden      = c(10, 2, 10),
##                    activation    = c("tanh", "lin", "tanh"),
##                    learning_rate = 0.15,
##                    loss          = "mse",
##                    optimizer     = "adam",
##                    encoder       = NULL,
##                    decoder       = NULL,
##                    ## is.na() of an S4 class gives a warning
##                    batchsize     = 20,
##                    epochs        = 5,
##                    validation_split = 0.2),

##     fun = function (data, pars,
##                     keep.org.data = TRUE) {
##       chckpkg("keras3")
##       indata <- data@data
##       indims <- ncol(indata)
##       ndim <- pars$ndim

##       input_data <- keras3::layer_input(shape = indims)
##       input_hidden <- keras3::layer_input(shape = ndim)

##       ## if the user did not specify encoder and decoder, we build them from the
##       ## parameters
##       if (is.null(pars$encoder) || is.null(pars$decoder)) {
##         depth <- length(pars$n_hidden)
##         if (depth %% 2 == 0) {
##           stop("the number of layers must be impair")
##         }

##         if (ndim != pars$n_hidden[ceiling(depth / 2)]) {
##           stop("the middle of n_hidden must be equal to ndim")
##         }

##         if (depth != length(pars$activation)) {
##           stop("declare an activation function for each layer")
##         }


##         in_depth <- ceiling(depth / 2)
##         out_depth <- depth - in_depth


##         layers <- mapply(
##           function(s, n) keras3::layer_dense(units = n, activation = s),
##           pars$activation, pars$n_hidden,
##           SIMPLIFY = FALSE
##         )

##         encoder <- c(input_data, layers[1:in_depth])
##         decoder <- c(input_hidden, layers[(in_depth + 1):depth])
##       } else {
##         encoder <- c(input_data, pars$encoder)
##         decoder <- c(input_hidden, pars$decoder)
##       }

##       ## now build the actual model, compile it and fit it
##       autoencoder <- c(input_data, encoder, decoder)
##       encoder <- encoder %>%
##         chain_list() %>%
##         keras3::keras_model()
##       decoder <- decoder %>%
##         chain_list() %>%
##         keras3::keras_model()
##       autoencoder <- autoencoder %>%
##         chain_list() %>%
##         keras3::keras_model()

##       autoencoder %>%
##         keras3::compile(
##           optimizer = pars$optimizer,
##           loss = pars$loss
##         )

##       history <- autoencoder %>%
##         keras3::fit(
##                  indata, indata,
##                  epochs           = pars$epochs,
##                  batch_size       = pars$batchsize,
##                  validation_split = pars$validation_split,
##                  verbose          = 0
##                )

##       meta <- data@meta
##       orgdata <- if (keep.org.data) data@data else NULL
##       indata <- data@data

##       appl <- function(x) {
##         appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame()
##         proj <- if (inherits(x, "dimRedData")) x@data else x

##         if (ncol(proj) != ncol(data@data))
##           stop("x must have the same number of dimensions ",
##                "as the original data")

##         res <- encoder(proj)
##         colnames(res) <- paste0("AE", seq_len(ncol(res)))
##         new("dimRedData", data = res, meta = appl.meta)
##       }

##       inv <- function(x) {
##         appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame()
##         proj <- if (inherits(x, "dimRedData")) x@data else x

##         if (ncol(proj) != pars$ndim)
##           stop("x must have the same number of dimensions ",
##                "as ndim data")

##         res <- decoder(proj)
##         colnames(res) <- colnames(indata)
##         new("dimRedData", data = res, meta = appl.meta)
##       }

##       colnames(outdata) <- paste0("AE", seq_len(ncol(outdata)))

##       return(new(
##         "dimRedResult",
##         data = new("dimRedData",
##                    data = outdata,
##                    meta = meta),
##         org.data     = orgdata,
##         apply        = appl,
##         inverse      = inv,
##         has.apply    = TRUE,
##         has.inverse  = TRUE,
##         has.org.data = keep.org.data,
##         method       = "AutoEncoder",
##         pars         = pars
##       ))
##     },
##     requires = c("tensorflow", "keras3"))
## )

## ## no idea why these and variants do not work:
## ## chain_list <- function(x1, x2) Reduce(`%>%`, x2, init = x1)
## ## chain_list <- function(x) Reduce(`%>%`, x)
## chain_list <- function(x1, x2 = NULL) {

##   if (is.null(x2)) {
##     stopifnot(is.list(x1))
##     result <- x1[[1]]
##     if (length(x1) > 1) for (i in 2:length(x1)) {
##                           result <- result %>% (x1[[i]])
##                         }
##   } else {
##     stopifnot(is.list(x2))
##     result <- x1
##     for (i in 1:length(x2)) {
##       result <- result %>% (x2[[i]])
##     }
##   }

##   return(result)
## }

Try the dimRed package in your browser

Any scripts or data that you put into this service are public.

dimRed documentation built on June 8, 2025, 10:52 a.m.