adjDevResid | R Documentation |
Calculates the adjusted deviance residuals for arbitrary prediction models. The adjusted deviance residuals should be approximately normal distributed, in the case of a well fitting model.
adjDevResid(dataLong, hazards)
dataLong |
Data set in long format ("class data.frame"). |
hazards |
Estimated discrete hazards of the data in long format("numeric vector"). Hazard rates are probabilities and therefore restricted to the interval [0, 1]. |
Output List with objects:
AdjDevResid Adjusted deviance residuals as numeric vector
Input A list of given argument input values (saved for reference)
Thomas Welchowski welchow@imbie.meb.uni-bonn.de
tutzModelDiscdiscSurv
\insertReftutzRegCatdiscSurv
intPredErr
, predErrCurve
library(survival) # Transform data to long format heart[, "stop"] <- ceiling(heart[, "stop"]) set.seed(0) Indizes <- sample(unique(heart$id), 25) randSample <- heart[unlist(sapply(1:length(Indizes), function(x) which(heart$id == Indizes[x]))),] heartLong <- dataLongTimeDep(dataSemiLong = randSample, timeColumn = "stop", eventColumn = "event", idColumn = "id", timeAsFactor = FALSE) # Fit a generalized, additive model and predict discrete hazards on data in long format library(mgcv) gamFit <- gam(y ~ timeInt + surgery + transplant + s(age), data = heartLong, family = "binomial") hazPreds <- predict(gamFit, type = "response") # Calculate adjusted deviance residuals devResiduals <- adjDevResid(dataLong = heartLong, hazards = hazPreds)$Output$AdjDevResid devResiduals
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.