View source: R/DiscSurvEvaluationCR.R
cIndexCompRisks | R Documentation |
Estimates the discrete concordance index in the case of competing risks.
cIndexCompRisks(markers, testTime, testEvents, trainTime, trainEvents)
markers |
Predictions on the test data with model fitted on training data ("numeric matrix"). Predictions are stored in the rows and the number of columns equal to the number of events. |
testTime |
New time intervals in the test data ("integer vector"). |
testEvents |
New event indicators (0 or 1) in the test data ("binary matrix"). Number of columns are equal to the number of events. |
trainTime |
Time intervals in the training data ("integer vector"). |
trainEvents |
Event indicators (0 or 1) in the training data ("binary matrix"). Number of columns are equal to the number of events. |
Value of discrete concordance index between zero and one ("numeric vector").
It is assumed that all time points up to the last observed interval [a_q-1, a_q) are available.
Moritz Berger moritz.berger@imbie.uni-bonn.de
https://www.imbie.uni-bonn.de/personen/dr-moritz-berger/
heyardValCompRisksdiscSurv
cIndex
################################################## # Example with unemployment data and prior fitting library(Ecdat) data(UnempDur) summary(UnempDur$spell) # Extract subset of data set.seed(635) IDsample <- sample(1:dim(UnempDur)[1], 100) UnempDurSubset <- UnempDur [IDsample, ] set.seed(-570) TrainingSample <- sample(1:100, 75) UnempDurSubsetTrain <- UnempDurSubset [TrainingSample, ] UnempDurSubsetTest <- UnempDurSubset [-TrainingSample, ] # Convert to long format UnempDurSubsetTrainLong <- dataLongCompRisks(dataShort = UnempDurSubsetTrain, timeColumn = "spell", eventColumns = c("censor1", "censor4"), timeAsFactor = TRUE) # Estimate continuation ratio model with logit link vglmFit <- VGAM::vglm(formula = cbind(e0, e1, e2) ~ timeInt + age + logwage, data = UnempDurSubsetTrainLong, family=VGAM::multinomial(refLevel = "e0")) gamFitPreds <- VGAM::predictvglm(vglmFit , newdata = cbind(UnempDurSubsetTest, timeInt = as.factor(UnempDurSubsetTest$spell))) # Evaluate C-Index based on short data format cIndexCompRisks(markers = gamFitPreds, testTime = UnempDurSubsetTest$spell, testEvents = UnempDurSubsetTest[, c("censor1", "censor4")], trainTime = UnempDurSubsetTrain$spell, trainEvents = UnempDurSubsetTrain[, c("censor1", "censor4")])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.