View source: R/DiscSurvEvaluationCR.R
predErrCompRisks | R Documentation |
Estimates prediction error curves for discrete survival competing risks models
predErrCompRisks( testPreds, testDataShort, trainDataShort, timeColumn, eventColumns, tmax = NULL )
testPreds |
Predictions on the test data with model fitted on training data ("numeric matrix"). Predictions are stored in the rows and the number of columns equal the number of events. |
testDataShort |
Test data in short format ("class data.frame"). |
trainDataShort |
Train data in short format ("class data.frame"). |
timeColumn |
Character giving the column name of the observed times("character vector"). |
eventColumns |
Character vector giving the column names of the event indicators (excluding censoring column) ("character vector"). |
tmax |
Gives the maximum time interval for which prediction errors are calculated ("integer vector"). It must not be higher than the maximum observed time in the training data. |
Calculated prediction errors for each competing event. Array with one matrix per competing event, with the predictions in the rows and the time points in the columns.
Moritz Berger moritz.berger@imbie.uni-bonn.de
https://www.imbie.uni-bonn.de/personen/dr-moritz-berger/
heyardValCompRisksdiscSurv
intPredErrCompRisks
, predErrCurve
########################### # Example unemployment data library(Ecdat) data(UnempDur) # Select subsample selectInd1 <- 1:200 selectInd2 <- 201:400 trainSet <- UnempDur[which(UnempDur$spell %in% (1:10))[selectInd1], ] testSet <- UnempDur[which(UnempDur$spell %in% (1:10))[selectInd2], ] # Convert to long format trainSet_long <- dataLongCompRisks(dataShort=trainSet, timeColumn="spell", eventColumns=c("censor1", "censor4"), timeAsFactor=TRUE) tmax <- max(trainSet$spell) testSet_long <- dataLongCompRisks(dataShort=testSet, timeColumn="spell", eventColumns=c("censor1", "censor4"), aggTimeFormat = TRUE, lastTheoInt=tmax, timeAsFactor=TRUE) # Estimate continuation ratio model with logit link vglmFit <- VGAM::vglm(formula=cbind(e0, e1, e2) ~ timeInt + age + logwage, data=trainSet_long, family=VGAM::multinomial(refLevel="e0")) # Calculate predicted hazards predHazards <- VGAM::predictvglm(vglmFit, newdata=testSet_long, type="response") # Compute prediction error predErrCompRisks(testPreds=predHazards[,-1], testSet, trainSet, "spell", c("censor1", "censor4"), tmax)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.