martingaleResid | R Documentation |
Estimates the martingale residuals of discrete survival model.
martingaleResid(hazards, dataSetLong) ## S3 method for class 'discSurvMartingaleResid' plot(x, covariates, dataSetLong, ...)
hazards |
Predicted hazards from a discrete survival model ("numeric vector"). |
dataSetLong |
Data in long format ("class data.frame"). |
x |
Object of class "discSurvMartingaleResid"("class discSurvMartingaleResid") |
covariates |
Names of covariates to plot ("character vector"). |
... |
Additional arguments to the plot function |
Gives a different plot of each marginal covariate against the martingale
residuals. Additionally a nonparametric loess
estimation is
done.
Martingale residuals for each observation in long format ("numeric vector").
Thomas Welchowski welchow@imbie.meb.uni-bonn.de
tutzModelDiscdiscSurv
\insertReftherneauMartdiscSurv
glm
# Example with cross validation and unemployment data library(Ecdat) data(UnempDur) summary(UnempDur$spell) # Extract subset of data set.seed(635) IDsample <- sample(1:dim(UnempDur)[1], 100) UnempDurSubset <- UnempDur [IDsample, ] # Conversion to long format UnempDurSubsetLong <- dataLong(dataShort = UnempDurSubset, timeColumn = "spell", eventColumn = "censor1") # Estimate discrete survival continuation ratio model contModel <- glm(y ~ timeInt + age + logwage, data = UnempDurSubsetLong, family = binomial(link = "logit")) # Fit hazards to the data set in long format hazPreds <- predict(contModel, type = "response") # Calculate martingale residuals for the unemployment data subset MartResid <- martingaleResid (hazards = hazPreds, dataSetLong = UnempDurSubsetLong) MartResid sum(MartResid) # Plot martingale residuals vs each covariate in the event interval # Dotted line represents the loess estimate plot(MartResid, covariates = c("age", "logwage"), dataSetLong = UnempDurSubsetLong)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.