ShiftedLoglogistic | R Documentation |
Mathematical and statistical functions for the Shifted Log-Logistic distribution, which is commonly used in survival analysis for its non-monotonic hazard as well as in economics, a generalised variant of Loglogistic.
The Shifted Log-Logistic distribution parameterised with shape, β, scale, α, and location, γ, is defined by the pdf,
f(x) = (β/α)((x-γ)/α)^{β-1}(1 + ((x-γ)/α)^β)^{-2}
for α, β > 0 and γ >= 0.
Returns an R6 object inheriting from class SDistribution.
The distribution is supported on the non-negative Reals.
ShiftLLogis(scale = 1, shape = 1, location = 0)
N/A
N/A
distr6::Distribution
-> distr6::SDistribution
-> ShiftedLoglogistic
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
packages
Packages required to be installed in order to construct the distribution.
properties
Returns distribution properties, including skewness type and symmetry.
new()
Creates a new instance of this R6 class.
ShiftedLoglogistic$new( scale = NULL, shape = NULL, location = NULL, rate = NULL, decorators = NULL )
scale
numeric(1))
Scale parameter of the distribution, defined on the positive Reals. scale = 1/rate
.
If provided rate
is ignored.
shape
(numeric(1))
Shape parameter, defined on the positive Reals.
location
(numeric(1))
Location parameter, defined on the Reals.
rate
(numeric(1))
Rate parameter of the distribution, defined on the positive Reals.
decorators
(character())
Decorators to add to the distribution during construction.
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation
E_X(X) = ∑ p_X(x)*x
with an integration analogue for continuous distributions.
ShiftedLoglogistic$mean(...)
...
Unused.
mode()
The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
ShiftedLoglogistic$mode(which = "all")
which
(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all"
returns all modes, otherwise specifies
which mode to return.
median()
Returns the median of the distribution. If an analytical expression is available
returns distribution median, otherwise if symmetric returns self$mean
, otherwise
returns self$quantile(0.5)
.
ShiftedLoglogistic$median()
variance()
The variance of a distribution is defined by the formula
var_X = E[X^2] - E[X]^2
where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.
ShiftedLoglogistic$variance(...)
...
Unused.
pgf()
The probability generating function is defined by
pgf_X(z) = E_X[exp(z^x)]
where X is the distribution and E_X is the expectation of the distribution X.
ShiftedLoglogistic$pgf(z, ...)
z
(integer(1))
z integer to evaluate probability generating function at.
...
Unused.
clone()
The objects of this class are cloneable with this method.
ShiftedLoglogistic$clone(deep = FALSE)
deep
Whether to make a deep clone.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other continuous distributions:
Arcsine
,
BetaNoncentral
,
Beta
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Dirichlet
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Gompertz
,
Gumbel
,
InverseGamma
,
Laplace
,
Logistic
,
Loglogistic
,
Lognormal
,
MultivariateNormal
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
Other univariate distributions:
Arcsine
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Empirical
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Geometric
,
Gompertz
,
Gumbel
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
Matdist
,
NegativeBinomial
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
,
WeightedDiscrete
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.