Wald | R Documentation |
Mathematical and statistical functions for the Wald distribution, which is commonly used for modelling the first passage time for Brownian motion.
The Wald distribution parameterised with mean, μ, and shape, λ, is defined by the pdf,
f(x) = (λ/(2x^3π))^{1/2} exp((-λ(x-μ)^2)/(2μ^2x))
for λ > 0 and μ > 0.
Sampling is performed as per Michael, Schucany, Haas (1976).
Returns an R6 object inheriting from class SDistribution.
The distribution is supported on the Positive Reals.
Wald(mean = 1, shape = 1)
quantile
is
omitted as no closed form analytic expression could be found, decorate with FunctionImputation
for a numerical imputation.
Also known as the Inverse Normal distribution.
distr6::Distribution
-> distr6::SDistribution
-> Wald
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
packages
Packages required to be installed in order to construct the distribution.
new()
Creates a new instance of this R6 class.
Wald$new(mean = NULL, shape = NULL, decorators = NULL)
mean
(numeric(1))
Mean of the distribution, location parameter, defined on the positive Reals.
shape
(numeric(1))
Shape parameter, defined on the positive Reals.
decorators
(character())
Decorators to add to the distribution during construction.
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation
E_X(X) = ∑ p_X(x)*x
with an integration analogue for continuous distributions.
Wald$mean(...)
...
Unused.
mode()
The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
Wald$mode(which = "all")
which
(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all"
returns all modes, otherwise specifies
which mode to return.
variance()
The variance of a distribution is defined by the formula
var_X = E[X^2] - E[X]^2
where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.
Wald$variance(...)
...
Unused.
skewness()
The skewness of a distribution is defined by the third standardised moment,
sk_X = E_X[((x - μ)/σ)^3]
where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.
Wald$skewness(...)
...
Unused.
kurtosis()
The kurtosis of a distribution is defined by the fourth standardised moment,
k_X = E_X[((x - μ)/σ)^4]
where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
Wald$kurtosis(excess = TRUE, ...)
excess
(logical(1))
If TRUE
(default) excess kurtosis returned.
...
Unused.
mgf()
The moment generating function is defined by
mgf_X(t) = E_X[exp(xt)]
where X is the distribution and E_X is the expectation of the distribution X.
Wald$mgf(t, ...)
t
(integer(1))
t integer to evaluate function at.
...
Unused.
cf()
The characteristic function is defined by
cf_X(t) = E_X[exp(xti)]
where X is the distribution and E_X is the expectation of the distribution X.
Wald$cf(t, ...)
t
(integer(1))
t integer to evaluate function at.
...
Unused.
pgf()
The probability generating function is defined by
pgf_X(z) = E_X[exp(z^x)]
where X is the distribution and E_X is the expectation of the distribution X.
Wald$pgf(z, ...)
z
(integer(1))
z integer to evaluate probability generating function at.
...
Unused.
clone()
The objects of this class are cloneable with this method.
Wald$clone(deep = FALSE)
deep
Whether to make a deep clone.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Michael, J. R., Schucany, W. R., & Haas, R. W. (1976). Generating random variates using transformations with multiple roots. The American Statistician, 30(2), 88-90.
Other continuous distributions:
Arcsine
,
BetaNoncentral
,
Beta
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Dirichlet
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Gompertz
,
Gumbel
,
InverseGamma
,
Laplace
,
Logistic
,
Loglogistic
,
Lognormal
,
MultivariateNormal
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Weibull
Other univariate distributions:
Arcsine
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Empirical
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Geometric
,
Gompertz
,
Gumbel
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
Matdist
,
NegativeBinomial
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Weibull
,
WeightedDiscrete
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.