Description Usage Arguments Details Value Author(s) References See Also Examples
Reconstructs the set of pseudo-numbers (or "effective" numbers) of cases and non-cases consistent with the input data (log relative risks). The method was first proposed in 2008 by Hamling.
1 |
y |
a vector, defining the (reported) log relative risks. |
v |
a vector, defining the variances of the reported log relative risks. |
cases |
a vector, defining the number of cases for each exposure level. |
n |
a vector, defining the total number of subjects for each exposure level. For incidence-rate data |
type |
a vector (or a character string), specifying the design of the study. Options are
|
data |
an optional data frame (or object coercible by |
The function reconstructs the effective counts corresponding to the multivariable adjusted log relative risks as well as their standard errors. A unique solution is guaranteed by keeping the ratio non-cases to cases and the fraction of unexposed subjects equal to the unadjusted data (Hamling). See the referenced article for a complete description of the algorithm implementation.
A list containing the following
y | mean or standardized mean differences for each treatment level, included the referent one (0 by calculation). |
v | variances corresponding to the mean or standardized mean differences for each treatment level, included the referent one (0 by calculation) |
S | co(variance) matrix for the non-referent mean or standardized mean differences. |
Alessio Crippa, alessio.crippa@ki.se
Hamling, J., Lee, P., Weitkunat, R., Ambuhl, M. (2008). Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Statistics in medicine, 27(7), 954-970.
Orsini, N., Li, R., Wolk, A., Khudyakov, P., Spiegelman, D. (2012). Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. American journal of epidemiology, 175(1), 66-73.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Loading data
data("alcohol_cvd")
## Obtaining pseudo-counts for the first study (id = 1)
hamling(y = logrr, v = I(se^2), cases = cases, n = n, type = type,
data = subset(alcohol_cvd, id == 1))
## Obtaining pseudo-counts for all study
by(alcohol_cvd, alcohol_cvd$id, function(x)
hamling(y = logrr, v = I(se^2), cases = cases, n = n, type = type, data = x))
## Restructuring the previous results in a matrix
do.call("rbind", by(alcohol_cvd, alcohol_cvd$id, function(x)
hamling(y = logrr, v = I(se^2), cases = cases, n = n, type = type,
data = x)))
|
Loading required package: mvmeta
This is mvmeta 0.4.11. For an overview type: help('mvmeta-package').
This is dosresmeta 2.0.1. For an overview type: help('dosresmeta-package').
A N
[1,] 76.95582 257.97205
[2,] 42.73158 168.37362
[3,] 39.45308 132.26428
[4,] 13.97820 33.31917
[5,] 11.31062 22.39601
alcohol_cvd$id: 1
A N
[1,] 76.95582 257.97205
[2,] 42.73158 168.37362
[3,] 39.45308 132.26428
[4,] 13.97820 33.31917
[5,] 11.31062 22.39601
------------------------------------------------------------
alcohol_cvd$id: 2
A N
[1,] 52.913070 177.89752
[2,] 57.763046 267.67141
[3,] 18.556846 147.47628
[4,] 9.994379 53.71185
------------------------------------------------------------
alcohol_cvd$id: 3
A N
[1,] 41.452972 106.702007
[2,] 22.177529 84.514191
[3,] 10.031247 37.732439
[4,] 2.764006 5.115727
------------------------------------------------------------
alcohol_cvd$id: 4
A N
[1,] 39.173314 118.44646
[2,] 18.800705 69.52881
[3,] 23.905038 52.87239
[4,] 7.394318 27.89229
------------------------------------------------------------
alcohol_cvd$id: 5
A N
[1,] 83.90221 236.41751
[2,] 112.61985 480.81420
[3,] 22.27598 118.43150
[4,] 15.84923 48.54299
------------------------------------------------------------
alcohol_cvd$id: 6
A N
[1,] 194.793723 513.74259
[2,] 51.583855 170.05696
[3,] 8.465255 22.55150
[4,] 5.940072 20.34565
A N
[1,] 76.955815 257.972052
[2,] 42.731577 168.373625
[3,] 39.453079 132.264284
[4,] 13.978196 33.319167
[5,] 11.310618 22.396014
[6,] 52.913070 177.897518
[7,] 57.763046 267.671412
[8,] 18.556846 147.476283
[9,] 9.994379 53.711849
[10,] 41.452972 106.702007
[11,] 22.177529 84.514191
[12,] 10.031247 37.732439
[13,] 2.764006 5.115727
[14,] 39.173314 118.446457
[15,] 18.800705 69.528810
[16,] 23.905038 52.872387
[17,] 7.394318 27.892294
[18,] 83.902213 236.417513
[19,] 112.619853 480.814195
[20,] 22.275982 118.431499
[21,] 15.849227 48.542986
[22,] 194.793723 513.742595
[23,] 51.583855 170.056958
[24,] 8.465255 22.551500
[25,] 5.940072 20.345652
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.