rows | R Documentation |
These functions provide a framework for modifying rows in a table using a
second table of data. The two tables are matched by
a set of key variables
whose values typically uniquely identify each row. The functions are inspired
by SQL's INSERT
, UPDATE
, and DELETE
, and can optionally modify
in_place
for selected backends.
rows_insert()
adds new rows (like INSERT
). By default, key values in
y
must not exist in x
.
rows_append()
works like rows_insert()
but ignores keys.
rows_update()
modifies existing rows (like UPDATE
). Key values in y
must be unique, and, by default, key values in y
must exist in x
.
rows_patch()
works like rows_update()
but only overwrites NA
values.
rows_upsert()
inserts or updates depending on whether or not the
key value in y
already exists in x
. Key values in y
must be unique.
rows_delete()
deletes rows (like DELETE
). By default, key values in y
must exist in x
.
rows_insert(
x,
y,
by = NULL,
...,
conflict = c("error", "ignore"),
copy = FALSE,
in_place = FALSE
)
rows_append(x, y, ..., copy = FALSE, in_place = FALSE)
rows_update(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE
)
rows_patch(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE
)
rows_upsert(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE)
rows_delete(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE
)
x, y |
A pair of data frames or data frame extensions (e.g. a tibble).
|
by |
An unnamed character vector giving the key columns. The key columns
must exist in both By default, we use the first column in |
... |
Other parameters passed onto methods. |
conflict |
For One of:
|
copy |
If |
in_place |
Should When |
unmatched |
For One of:
|
An object of the same type as x
. The order of the rows and columns of x
is preserved as much as possible. The output has the following properties:
rows_update()
and rows_patch()
preserve the number of rows;
rows_insert()
, rows_append()
, and rows_upsert()
return all existing
rows and potentially new rows; rows_delete()
returns a subset of the
rows.
Columns are not added, removed, or relocated, though the data may be updated.
Groups are taken from x
.
Data frame attributes are taken from x
.
If in_place = TRUE
, the result will be returned invisibly.
These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
rows_insert()
: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_insert")}.
rows_append()
: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_append")}.
rows_update()
: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_update")}.
rows_patch()
: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_patch")}.
rows_upsert()
: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_upsert")}.
rows_delete()
: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_delete")}.
data <- tibble(a = 1:3, b = letters[c(1:2, NA)], c = 0.5 + 0:2)
data
# Insert
rows_insert(data, tibble(a = 4, b = "z"))
# By default, if a key in `y` matches a key in `x`, then it can't be inserted
# and will throw an error. Alternatively, you can ignore rows in `y`
# containing keys that conflict with keys in `x` with `conflict = "ignore"`,
# or you can use `rows_append()` to ignore keys entirely.
try(rows_insert(data, tibble(a = 3, b = "z")))
rows_insert(data, tibble(a = 3, b = "z"), conflict = "ignore")
rows_append(data, tibble(a = 3, b = "z"))
# Update
rows_update(data, tibble(a = 2:3, b = "z"))
rows_update(data, tibble(b = "z", a = 2:3), by = "a")
# Variants: patch and upsert
rows_patch(data, tibble(a = 2:3, b = "z"))
rows_upsert(data, tibble(a = 2:4, b = "z"))
# Delete and truncate
rows_delete(data, tibble(a = 2:3))
rows_delete(data, tibble(a = 2:3, b = "b"))
# By default, for update, patch, and delete it is an error if a key in `y`
# doesn't exist in `x`. You can ignore rows in `y` that have unmatched keys
# with `unmatched = "ignore"`.
y <- tibble(a = 3:4, b = "z")
try(rows_update(data, y, by = "a"))
rows_update(data, y, by = "a", unmatched = "ignore")
rows_patch(data, y, by = "a", unmatched = "ignore")
rows_delete(data, y, by = "a", unmatched = "ignore")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.