Nothing
`RM` <-
function(X, W, se = TRUE, sum0 = TRUE, etaStart)
{
#...X: 0/1 person*item matrix
#-------------------main programm-------------------
call<-match.call()
groupvec <- 1
mpoints <- 1
model <- "RM"
if (missing(W)) W <- NA
else W <- as.matrix(W)
if (missing(etaStart)) etaStart <- NA
else etaStart <- as.vector(etaStart)
XWcheck <- datcheck(X,W,mpoints,groupvec,model) #inital check of X and W
X <- XWcheck$X
lres <- likLR(X,W,mpoints,groupvec,model,st.err=se,sum0,etaStart)
parest <- lres$parest #full groups for parameter estimation
loglik <- -parest$minimum #log-likelihood value
iter <- parest$iterations #number of iterations
convergence <- parest$code
etapar <- parest$estimate #eta estimates
betapar <- as.vector(lres$W%*% etapar) #beta estimates
if (se) {
se.eta <- sqrt(diag(solve(parest$hessian))) #standard errors
se.beta <- sqrt(diag(lres$W%*%solve(parest$hessian)%*%t(lres$W))) #se beta
} else {
se.eta <- rep(NA,length(etapar))
se.beta <- rep(NA,length(betapar))
}
X01 <- lres$X01
labs <- labeling.internal(model,X,X01,lres$W,etapar,betapar,mpoints,max(groupvec)) #labeling for L-models
W <- labs$W
etapar <- labs$etapar
betapar <- labs$betapar
etapar <- -etapar # output difficulty rh 25-03-2010
npar <- dim(lres$W)[2] #number of parameters
result <- list(X=X,X01=X01,model=model,loglik=loglik,npar=npar,iter=iter,convergence=convergence,
etapar=etapar,se.eta=se.eta,hessian=parest$hessian,betapar=betapar,
se.beta=se.beta,W=W,call=call)
class(result) <- c("dRm","Rm","eRm") #classes: dichotomous RM, RM (RM, PCM, RSM), and extended RM (all)
result
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.