Nothing
test_that("factor outcome - factor predictor", {
class_test <- recipe(x2 ~ ., data = ex_dat) |>
step_lencode(x3, outcome = vars(x2), smooth = FALSE, id = "id") |>
prep(training = ex_dat, retain = TRUE)
tr_values <- bake(class_test, new_data = NULL)$x3
new_values <- bake(class_test, new_data = new_dat)
expect_snapshot(
new_values_ch <- bake(class_test, new_data = new_dat_ch)
)
key <- class_test$steps[[1]]$mapping
td_obj <- tidy(class_test, number = 1)
expect_equal("x3", names(key))
expect_equal(
length(unique(ex_dat$x3)) + 1,
nrow(key$x3)
)
expect_true(sum(key$x3$..level == "..new") == 1)
expect_true(is.numeric(tr_values))
expect_equal(
new_values$x3[1],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values$x3[2],
key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]]
)
expect_equal(
new_values$x3[3],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values_ch$x3[1],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values_ch$x3[2],
key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]]
)
expect_equal(
new_values_ch$x3[3],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
td_obj$level,
key$x3$..level
)
expect_equal(
td_obj$value,
key$x3$..value
)
new_values
})
test_that("factor outcome - character predictor", {
class_test <- recipe(x2 ~ ., data = ex_dat_ch) |>
step_lencode(x3, outcome = vars(x2), smooth = FALSE) |>
prep(training = ex_dat_ch, retain = TRUE)
tr_values <- bake(class_test, new_data = NULL)$x3
expect_snapshot(
new_values <- bake(class_test, new_data = new_dat_ch)
)
new_values_fc <- bake(class_test, new_data = new_dat)
key <- class_test$steps[[1]]$mapping
td_obj <- tidy(class_test, number = 1)
expect_equal("x3", names(key))
expect_equal(
length(unique(ex_dat$x3)) + 1,
nrow(key$x3)
)
expect_true(sum(key$x3$..level == "..new") == 1)
expect_true(is.numeric(tr_values))
expect_equal(
new_values$x3[1],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values$x3[2],
key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]]
)
expect_equal(
new_values$x3[3],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values_fc$x3[1],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values_fc$x3[2],
key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]]
)
expect_equal(
new_values_fc$x3[3],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
td_obj$level,
key$x3$..level
)
expect_equal(
td_obj$value,
key$x3$..value
)
unseen_level <- data.frame(
x1 = 0,
x2 = factor("a", levels = c("a", "b")),
x3 = "unseen-level",
x4 = factor("A", levels = c("A", "B", "C", "D", "E"))
)
expect_equal(
bake(class_test, unseen_level)$x3,
0
)
})
test_that("numeric outcome - factor predictor", {
reg_test <- recipe(x1 ~ ., data = ex_dat) |>
step_lencode(x3, outcome = vars(x1)) |>
prep(training = ex_dat, retain = TRUE)
tr_values <- bake(reg_test, new_data = NULL)$x3
new_values <- bake(reg_test, new_data = new_dat)
expect_snapshot(
new_values_ch <- bake(reg_test, new_data = new_dat_ch)
)
td_obj <- tidy(reg_test, number = 1)
key <- reg_test$steps[[1]]$mapping
expect_equal("x3", names(key))
expect_equal(
length(unique(ex_dat$x3)) + 1,
nrow(key$x3)
)
expect_true(sum(key$x3$..level == "..new") == 1)
expect_true(is.numeric(tr_values))
expect_equal(
new_values$x3[1],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values$x3[2],
key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]]
)
expect_equal(
new_values$x3[3],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values_ch$x3[1],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values_ch$x3[2],
key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]]
)
expect_equal(
new_values_ch$x3[3],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
td_obj$level,
key$x3$..level
)
expect_equal(
td_obj$value,
key$x3$..value
)
})
test_that("numeric outcome - character predictor", {
reg_test <- recipe(x1 ~ ., data = ex_dat_ch) |>
step_lencode(x3, outcome = vars(x1)) |>
prep(training = ex_dat_ch, retain = TRUE)
tr_values <- bake(reg_test, new_data = NULL)$x3
new_values <- bake(reg_test, new_data = new_dat_ch)
new_values_fc <- bake(reg_test, new_data = new_dat)
key <- reg_test$steps[[1]]$mapping
td_obj <- tidy(reg_test, number = 1)
expect_equal("x3", names(key))
expect_equal(
length(unique(ex_dat$x3)) + 1,
nrow(key$x3)
)
expect_true(sum(key$x3$..level == "..new") == 1)
expect_true(is.numeric(tr_values))
expect_equal(
new_values$x3[1],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values$x3[2],
key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]]
)
expect_equal(
new_values$x3[3],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values_fc$x3[1],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
new_values_fc$x3[2],
key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]]
)
expect_equal(
new_values_fc$x3[3],
key$x3$..value[key$x3$..level == "..new"]
)
expect_equal(
td_obj$level,
key$x3$..level
)
expect_equal(
td_obj$value,
key$x3$..value
)
unseen_level <- data.frame(
x1 = 0,
x2 = factor("a", levels = c("a", "b")),
x3 = "unseen-level",
x4 = factor("A", levels = c("A", "B", "C", "D", "E"))
)
expect_equal(
bake(reg_test, unseen_level)$x3,
mean(ex_dat_ch$x1)
)
})
test_that("non occurring events doesn't result in infinities", {
data <- data.frame(
outcome = c("a", "a", "b", "b"),
predictor = c("a", "a", "a", "b")
)
res <- recipe(outcome ~ ., data = data) |>
step_lencode(predictor, outcome = vars(outcome), smooth = FALSE) |>
prep() |>
tidy(1)
exp <- c(
log(2 / 3 / (1 - 2 / 3)),
log(
(2 * nrow(data) - 1) /
(2 * nrow(data)) /
(1 - (2 * nrow(data) - 1) / (2 * nrow(data)))
),
log(0.5 / (1 - 0.5))
)
expect_identical(res$value, exp)
expect_identical(res$level, c("a", "b", "..new"))
})
test_that("non occurring events doesn't result in infinities - case weights", {
data <- data.frame(
outcome = c("a", "a", "b", "b"),
predictor = c("a", "a", "a", "b"),
wts = importance_weights(rep(1, 4))
)
res <- recipe(outcome ~ ., data = data) |>
step_lencode(predictor, outcome = vars(outcome), smooth = FALSE) |>
prep() |>
tidy(1)
exp <- c(
log(2 / 3 / (1 - 2 / 3)),
log(
(2 * nrow(data) - 1) /
(2 * nrow(data)) /
(1 - (2 * nrow(data) - 1) / (2 * nrow(data)))
),
log(0.5 / (1 - 0.5))
)
expect_identical(res$value, exp)
expect_identical(res$level, c("a", "b", "..new"))
})
test_that("bad args", {
three_class <- iris
three_class$fac <- rep(letters[1:3], 50)
three_class$logical <- rep(c(TRUE, FALSE), 75)
expect_snapshot(
error = TRUE,
recipe(Species ~ ., data = three_class) |>
step_lencode(Sepal.Length, outcome = vars(Species)) |>
prep(training = three_class, retain = TRUE)
)
expect_snapshot(
error = TRUE,
recipe(Species ~ ., data = three_class) |>
step_lencode(Species, outcome = vars(logical)) |>
prep(training = three_class, retain = TRUE)
)
})
test_that("case weights", {
wts_int <- rep(c(0.9, 1), times = c(100, 400))
ex_dat_cw <- ex_dat |>
mutate(wts = importance_weights(wts_int))
class_test <- recipe(x2 ~ ., data = ex_dat_cw) |>
step_lencode(x3, outcome = vars(x2), smooth = FALSE, id = "id") |>
prep(training = ex_dat_cw, retain = TRUE)
ref_mod <- glm(
x2 ~ 0 + x3,
data = ex_dat_cw,
family = binomial,
na.action = na.omit,
weights = ex_dat_cw$wts
)
inf_estimate_p <- (2 * nrow(ex_dat_cw) - 1) / (2 * nrow(ex_dat_cw))
inf_estimate_log_odds <- log(inf_estimate_p / (1 - inf_estimate_p))
exp <- tibble(
..level = names(coef(ref_mod)),
..value = unname(coef(ref_mod))
) |>
mutate(
..level = gsub("^x3", "", ..level),
..value = -..value,
..value = if_else(abs(..value) < 0.0001, 0, ..value),
..value = if_else(
abs(round(..value, 0.4)) == max(abs(round(..value, 0.4))),
inf_estimate_log_odds,
..value
)
) |>
arrange(..level)
res <- slice_head(class_test$steps[[1]]$mapping$x3, n = -1) |>
arrange(..level)
expect_equal(
res,
exp,
tolerance = 0.00001
)
expect_snapshot(class_test)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
rec <- recipe(x2 ~ ., data = ex_dat) |>
step_lencode(x3, outcome = vars(x2), smooth = FALSE) |>
update_role(x3, new_role = "potato") |>
update_role_requirements(role = "potato", bake = FALSE)
rec_trained <- prep(rec, training = ex_dat, verbose = FALSE)
expect_snapshot(
error = TRUE,
bake(rec_trained, new_data = ex_dat[, -3])
)
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_lencode(rec, outcome = vars(mpg))
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_lencode(rec1, outcome = vars(mpg))
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_lencode(rec, outcome = vars(mpg))
expect <- tibble(
terms = character(),
level = character(),
value = double(),
id = character()
)
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("printing", {
rec <- recipe(x1 ~ ., data = ex_dat_ch) |>
step_lencode(x3, outcome = vars(x1))
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.