Nothing
# File tests/testthat/test-multinet.R in package ergm.multi, part of the
# Statnet suite of packages for network analysis, https://statnet.org .
#
# This software is distributed under the GPL-3 license. It is free,
# open source, and has the attribution requirements (GPL Section 7) at
# https://statnet.org/attribution .
#
# Copyright 2003-2024 Statnet Commons
################################################################################
data(samplk)
logit <- function(p) log(p/(1-p))
times <- 1:3
samplk1%n%"t" <- times[1]
samplk1%e%"w" <- floor(runif(network.edgecount(samplk1), 0, 4))
samplk2%n%"t" <- times[2]
samplk2%e%"w" <- floor(runif(network.edgecount(samplk2), 0, 4))
samplk3%n%"t" <- times[3]
samplk3%e%"w" <- floor(runif(network.edgecount(samplk3), 0, 4))
samplkl <- list(samplk1, samplk2, samplk3)
samplks <- Networks(samplk1, samplk2, samplk3)
test_that("N() summary with an LM and noncompacted stats", {
summ.N <- summary(samplks~N(~edges+nodematch("cloisterville"), ~1+t), term.options=list(N.compact_stats=FALSE))
summ.l <- unlist(lapply(samplkl, function(nw) summary(statnet.common::nonsimp_update.formula(~edges+nodematch("cloisterville"), nw~., from.new="nw"))))
names(summ.l) <- paste0("N#", rep(1:3, each=2), "~", names(summ.l))
expect_equal(summ.N, summ.l)
})
test_that("N() summary with offset and compacted stats", {
summ.N <- summary(samplks~N(~edges, offset=~t))
summ.l <- sapply(samplkl, function(nw) summary(statnet.common::nonsimp_update.formula(~edges, nw~., from.new="nw")))
summ.l <- c(sum(summ.l), sum(summ.l*1:3))
expect_equal(summ.N, summ.l, ignore_attr=TRUE)
})
test_that("Valued N() summary with an LM and noncompacted stats", {
summ.N <- summary(samplks~N(~sum+nodematch("cloisterville", form="sum"), ~1+t), term.options=list(N.compact_stats=FALSE), response="w")
summ.l <- unlist(lapply(samplkl, function(nw) summary(statnet.common::nonsimp_update.formula(~sum+nodematch("cloisterville", form="sum"), nw~., from.new="nw"), response="w")))
expect_equal(summ.N, summ.l, ignore_attr=TRUE)
})
test_that("Valued N() summary with offset and compacted stats", {
summ.N <- summary(samplks~N(~sum, offset=~t), response="w")
summ.l <- sapply(samplkl, function(nw) summary(statnet.common::nonsimp_update.formula(~sum, nw~., from.new="nw"), response="w"))
summ.l <- c(sum(summ.l), sum(summ.l*1:3))
expect_equal(summ.N, summ.l, ignore_attr=TRUE)
})
pl <- lapply(samplkl, function(nw) ergmMPLE(statnet.common::nonsimp_update.formula(~edges+nodematch("cloisterville"), nw~., from.new="nw")))
for(N.compact_stats in c(FALSE,TRUE)){
testlab <- if(N.compact_stats) "compacted stats" else "noncompacted stats"
test_that(paste("N() estimation with an LM and", testlab),{
# Three networks, jointly.
ergmfit <- ergm(samplks~N(~edges+nodematch("cloisterville"), ~1+t), control=control.ergm(term.options=list(N.compact_stats=N.compact_stats)))
nr <- sapply(lapply(pl, `[[`, "response"),length)
y <- unlist(lapply(pl, `[[`, "response"))
x <- do.call(rbind,lapply(pl, `[[`, "predictor"))
x <- as.data.frame(cbind(x,t=rep(times, nr)))
w <- unlist(lapply(pl, `[[`, "weights"))
glmfit <- glm(y~t*nodematch.cloisterville,data=x,weights=w,family="binomial")
expect_equal(coef(glmfit),coef(ergmfit), ignore_attr=TRUE, tolerance=1e-7)
})
test_that(paste("N() estimation with an LM, subsetting, and", testlab),{
# Ignore second (test subset).
ergmfit <- ergm(samplks~N(~edges+nodematch("cloisterville"), ~1+t, subset=quote(t!=2)), control=control.ergm(term.options=list(N.compact_stats=N.compact_stats)))
pl2 <- pl[-2]
times2 <- times[-2]
nr <- sapply(lapply(pl2, `[[`, "response"),length)
y <- unlist(lapply(pl2, `[[`, "response"))
x <- do.call(rbind,lapply(pl2, `[[`, "predictor"))
x <- as.data.frame(cbind(x,t=rep(times2, nr)))
w <- unlist(lapply(pl2, `[[`, "weights"))
glmfit <- glm(y~t*nodematch.cloisterville,data=x,weights=w,family="binomial")
expect_equal(coef(glmfit),coef(ergmfit), ignore_attr=TRUE, tolerance=1e-7)
})
test_that(paste("N() estimation with an LM, subsetting down to only 1 network, and", testlab),{
# Ignore first and third (test subset).
expect_warning(ergmfit <- ergm(samplks~N(~edges+nodematch("cloisterville"), ~1+t, subset=quote(t==2)), control=control.ergm(term.options=list(N.compact_stats=N.compact_stats))), ".*model is nonidentifiable.*")
pl2 <- pl[2]
times2 <- times[2]
nr <- sapply(lapply(pl2, `[[`, "response"),length)
y <- unlist(lapply(pl2, `[[`, "response"))
x <- do.call(rbind,lapply(pl2, `[[`, "predictor"))
x <- as.data.frame(cbind(x,t=rep(times2, nr)))
w <- unlist(lapply(pl2, `[[`, "weights"))
glmfit <- glm(y~t*nodematch.cloisterville,data=x,weights=w,family="binomial")
# Note that unlike glmift, ergm cannot detect nonidentifiability at
# this time.
if(N.compact_stats){
expect_equal(na.omit(coef(glmfit)),na.omit(coef(ergmfit)), ignore_attr=TRUE)
}else{
expect_equal(na.omit(coef(glmfit)),
c(matrix(c(1,2,0,0,
0,0,1,2),2,4,byrow=TRUE)%*%coef(ergmfit)),
ignore_attr=TRUE, tolerance=1e-7)
}
})
}
test_that("N() warns on parameter name mismatch",{
samplk1%v%"x" <- 1:2
samplk2%v%"x" <- 3:4
expect_warning(summary(Networks(samplk1,samplk2)~N(~nodemix("x"))),
"different parameter names")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.