inst/app/app.R

  source("shiny-helper-funs.R")
  
  # Access compile_mods from the global environment
  compile_mods <- .GlobalEnv$compile_mods
  
  options(spinner.color="#0275D8", spinner.color.background="#ffffff", spinner.size=2)
  
 
  ui = fluidPage(shinyjs::useShinyjs(),
                 shinybusy::add_busy_spinner(spin = "semipolar"),			 
				tags$head(tags$title("ShinyExpertsurv")),  
                 titlePanel(
                   div(style = "display: flex; align-items: center;",
                       img(src = "hexsticker.png", height = "150px", style = "margin-left: 20px;"),
                       h1("ShinyExpertsurv", style = "flex-grow: 1;")
                   )
                 ),
                 tags$head(
                   tags$style(HTML(".fixed-height {min-height: 100px; /* Adjust this value as needed */ }")),
                   tags$style(HTML("#run_analysis {
                                      font-size: 18px;
                                      color: #FFFFFF;
                                      background-color: #5bc0de;
                                      border: 2px solid #000000;
                                      width: 100%;
                                      height: 60px;}"))),
                 sidebarPanel(
                   wellPanel(
                     h3("Reference Documents"),
                     tags$a(href = "README.html", "expertsurv Package README"),
                     tags$br(),
                     tags$a(href = "ShinyExpertsurv-Vignette.html", "ShinyExpertsurv App README")),
                   wellPanel(
                     fileInput('df_upload', 'Choose .csv data file to upload',
                               accept = c(".csv")),
                     varSelectInput("variables", "Variable:", data.frame(NULL), multiple = TRUE),
                     p("Data should have the following columns: time and status. If your data has two treatment arms please include an arm column."),
                     numericInput("n_expert", "Number of Experts", value = 1, min = 1),
                     numericInput("n_timepoint", "Number of Timepoints", value = 1,min = 1,  max = 2),
                     numericInput("xlim", "Limit of x-axis on Survival Plot", value = round(10,digits = 0)),
                     checkboxInput(inputId ="expert_opt", label = "Show Advanced options for expert opinion", value = FALSE),
                     checkboxInput(inputId ="MLV_opt", label = "Include Most Likely Values (MLV)", value = FALSE),
                     selectInput(inputId ="pool_type_eval", label = "Pooling approach for experts", 
                                 choices = c("Linear Pool" = "linear pool","Logarithmic Pool"= "log pool"),selected = "linear pool"),
                     selectInput(inputId ="dist_select", label = "Select the best fitting distribution for Expert Pooling", 
                                 choices = c("Best Fitting" = "best",
                                             "Normal"= "normal",
                                             "T-distribution" = "t",
                                             "Gamma" = "gamma",
                                             "Log-Normal" = "lognormal",
                                             "Beta" = "beta"), 
                                 selected = "best"),
                     actionButton(paste0('update_expert'), "Plot/Update Survival Curves and Expert Opinions")),
                   hr(),
                   tabsetPanel(id = "Timepoints",
                               tabPanel("Timepoints1",
                                        numericInput(paste0("time1"), label= "Timepoint", value= 1),
                                        textInput('quant_vec1', 'Enter a Vector of Quantiles', "0.025,0.5,0.975"),
                                        helpText("Enter the judgements in the table below,
                                                              one column per expert. Enter quantile values corresponding to the cumulative probabilities. 
                                                             Enter Most Likely Values (i.e. Mode) for each expert if included."),
                                        shinyMatrix::matrixInput(
                                          inputId = "matrix1",
                                          value = m_default_gen(),
                                          class = "numeric",
                                          cols = list(names = TRUE,
                                                      editableNames = FALSE),
                                          rows = list(names = FALSE,
                                                      editableNames = FALSE)),
                                        shinyMatrix::matrixInput(
                                          inputId = "matrix1_mode",
                                          value = m_default_gen2(),
                                          class = "numeric",
                                          cols = list(names = TRUE,
                                                      editableNames = FALSE),
                                          rows = list(names = TRUE,
                                                      editableNames = FALSE)),
                                        plotOutput(paste0("expert_plot1"))),
                               tabPanel("Timepoints2",
                                        numericInput(paste0("time2"), label= "Timepoint", value= 1),
                                        textInput('quant_vec2', 'Enter a Vector of Quantiles', "0.025,0.5,0.975"),
                                        helpText("Enter the judgements in the table below, one column per expert. Enter quantile values corresponding to the cumulative probabilities."),
                                        shinyMatrix::matrixInput(
                                          inputId = "matrix2",
                                          value = m_default_gen(),
                                          class = "numeric",
                                          cols = list(names = TRUE,
                                                      editableNames = FALSE),
                                          rows = list(names = FALSE,
                                                      editableNames = FALSE)),
                                        shinyMatrix::matrixInput(
                                          inputId = "matrix2_mode",
                                          value = m_default_gen2(),
                                          class = "numeric",
                                          cols = list(names = TRUE,
                                                      editableNames = FALSE),
                                          rows = list(names = TRUE,
                                                      editableNames = FALSE)),
                                        
                                        plotOutput(paste0("expert_plot2"))))),
                 mainPanel(
                   h3("Kaplan-Meier Survival Plot"),
                   plotOutput("plot_km_expert1"),
                   
                   fluidRow(
                     column(width = 3, actionButton("run_analysis", "Run Analysis")),
                     column(width = 3, 
                            selectInput("opinion_type", label = "Choose opinion type",
                                        choices = c("Survival at timepoint(s)" = "survival",
                                                    "Mean difference between survival" = "mean",
                                                    "No expert opinion" = "no_expert"),
                                        selected = "survival")),
                     column(width = 3, class = "fixed-height", 
                            selectInput("stat_type", label = "Choose statistical approach",
                                        choices = c("Frequentist" = "mle", "Bayesian" = "bayes"),
                                        selected = "mle"),
                            conditionalPanel(
                              condition = "input.stat_type == 'bayes'",
                              numericInput("iterations", "Number of iterations:", value = 2000)
                            )),
                     column(width = 3, 
                            shinyWidgets::pickerInput(
                              inputId = "param_mod",
                              label = "Choose models:",
                              choices = c("Exponential" = "exp", "Weibull" = "wei", "Gompertz" = "gomp", 
                                          "Log-Logistic"= "llo", "Log-normal" = "lno", "Generalized-Gamma" = "gga",
                                          "Royston-Parmar (1 knot)" = "rps"),
                              options = list(
                                `actions-box` = TRUE,
                                size = 10,
                                `selected-text-format` = "count > 3"
                              ),
                              multiple = TRUE,
                              selected  = c("exp", "wei")
                            )),
                     column(width = 3, 
                            selectInput("id_trt", label = "Select name of treatment corresponding to expert opinion",
                                        choices =  character(0)))
                   ),
                   
                   fluidRow(
                     column(width = 3, 
                            selectInput("gof_type", label = "Choose goodness of fit measure",
                                        choices = c("AIC" = "aic", "BIC" = "bic"),
                                        selected = "AIC")),
                     column(width = 3, 
                            selectInput("incl_psa", label = "Include Statistical Uncertainty in Plots",
                                        choices = c("Yes" = "yes", "No" = "no"),
                                        selected = "no"))
                   ),
                   
                   plotOutput("plot_gof"),
                   
                   fluidRow(
                     column(width = 3, textInput('file_name', 'Enter filename for saved output', "Output-File")),
                     column(width = 3, 
                            selectInput("outFormat", label = "Report format",
                                        choices = list(html = "html_document", pdf = "pdf_document", Word = "word_document")))
                   ),
                   
                   fluidRow(
                     column(width = 3, downloadButton("save_output", "Download R objects")),
                     column(width = 3, downloadButton("report", "Download report"))
                   )
                 )
                 
  )
  
  
  create_server <- function(compile_mods){function(input, output, session){
    
    #shinyjs::hide("incl_psa") 
    
    value <- reactiveValues(
      m_default = m_default_gen(),
      n_expert_prev = 1,
      quant_vec2 = NULL,
      id_trt = NULL) #Up to max timepoints
    
    
    observeEvent(input$stat_type,{
      if(input$stat_type == "mle"){
        updateSelectInput(session,"gof_type",choices = c("AIC" = "aic", "BIC" = "bic"))
      }else{
        updateSelectInput(session,"gof_type",choices = c("WAIC" = "waic", "PML" = "pml"))
      }
      
    })
    
    
    observeEvent(input$MLV_opt,{
      if(input$MLV_opt){
        shinyjs::show("matrix1_mode")
        shinyjs::show("matrix2_mode")
      }else{
        shinyjs::hide("matrix1_mode")
        shinyjs::hide("matrix2_mode")
        
      }
      
    })
    
    observeEvent(input$df_upload,{
      inFile <- input$df_upload
      df_upload <- utils::read.csv(inFile$datapath)
      value$df_upload <- df_upload
      #varSelectInput("variables", "Variable:", df_upload, multiple = TRUE),
      vars <- names(df_upload)
      # Update select input immediately after clicking on the action button. 
      updateSelectInput(session, "variables","Variable:", choices = vars)
      
    })
    observeEvent(input$expert_opt,{
      #browser()
      if(input$expert_opt){
        shinyjs::show("pool_type_eval")
        shinyjs::show("dist_select")
        shinyjs::show("MLV_opt")
      }else{
        shinyjs::hide("pool_type_eval")
        shinyjs::hide("dist_select")
        shinyjs::hide("MLV_opt")
      }
    })
    
    observeEvent(input$Timepoints, {
      i <- as.numeric(gsub("Timepoints", "", input$Timepoints))
      output$expert_plot <- renderPlot({
        value[[paste0("expert_plot", i)]]
      })
      
    })
    
    
    observeEvent({input$variables},{
    
      if(length(input$variables) == 2 & exists("value$df_work")){
        df_work$arm <- 1
      }
    })
    
    
    observeEvent({input$update_expert},{
      if(length(input$variables) >= 2 ){
        df_work <- dplyr::select(value$df_upload, !!!input$variables)
        
        #browser()    
        if(length(input$variables) == 2){
          df_work$arm <- 1
        }
        
        colnames(df_work) <- c("time", "status", "arm")
        trt_vec <- unique(df_work[["arm"]])
        
        prev_input <- input$opinion_type
        
        
        if(length(trt_vec) == 1){
          result.km <- survfit(Surv(time, status) ~ 1, data = df_work, conf.type="log-log")
          km.data <- data.frame(cbind(result.km[[c("time")]],
                                      result.km[[c("surv")]],
                                      result.km[[c("upper")]],
                                      result.km[[c("lower")]],
                                      arm = 1))
          
          
          
          if(!any(prev_input %in% c("survival","no_expert"))){
            prev_input <- character(0)
          }
          
          updateSelectInput(session,"opinion_type",choices = c("Survival at timepoint(s)" = "survival",
                                                               "No expert opinion" = "no_expert"), selected  = prev_input)
          shinyjs::hide("id_trt") #hide id_trt panel
          value$id_trt <- NULL
          df_work$arm <- 1
        }else{
          
          shinyjs::show("id_trt") #hide id_trt panel
          trt_vec_char <- as.character(trt_vec)
          
          updateSelectInput(inputId = "id_trt", choices = trt_vec_char,selected = head(trt_vec_char,1) )
          
          km.data <- NULL
          for(i in unique(df_work$arm)){
            df_temp <-  filter(df_work, arm == i)
            result.km_temp <- survfit(Surv(time, status) ~ 1, data = df_temp, conf.type="log-log")
            km.data_temp <- data.frame(cbind(result.km_temp[[c("time")]],
                                             result.km_temp[[c("surv")]],
                                             result.km_temp[[c("upper")]],
                                             result.km_temp[[c("lower")]],
                                             arm = i))
            
            km.data <-  rbind(km.data,km.data_temp)
          }
          
          updateSelectInput(session,"opinion_type",
                            choices = c("Survival at timepoint(s)" = "survival",
                                        "Mean difference between survival"= "mean",
                                        "No expert opinion" = "no_expert"),
                            selected = prev_input)
          
        }
        
        colnames(km.data) <- c("Time", "Survival", "upper", "lower", "arm")
        #browser()
        value$km.data <- km.data
        value$df_work <- df_work
        value$id_trt <- input$id_trt
        #Need to adjust for arm
        
        plot_fit <- ggplot2::ggplot(value$km.data, aes(x = Time,y =Survival, col = factor(arm)))+
          geom_step()+
          ylim(0,1)+
          xlim(0, input$xlim)+
          geom_step(aes(x  = Time, y =upper, col = factor(arm)))+
          geom_step(aes(x  = Time, y =lower, col = factor(arm)))+
          theme_light()#+
  
        if(!any(is.na(input[["matrix1"]][,2]))){ # If Expert opinions are not NA values
          
          times_expert_vec <- c()
          df.linear_all <- NULL
          param_expert <- list()
          df.linear <- list()
          scale_vec <- c()
          final_scale <- 0.2 # We want the difference between the final time and density to be less than 0.2
          
          for(i in 1:input$n_timepoint){ #Update
            
            if(input$opinion_type == "survival"){
              St_opinion = 1
            }else{
              St_opinion = 0
            }
            if(input$MLV_opt){
              output_pool <- return_pooled_info(input[[paste0("matrix",i)]], St_indic = St_opinion,dist = input$dist_select, mode =input[[paste0("matrix",i,"_mode")]][1,])
            }else{
              output_pool <- return_pooled_info(input[[paste0("matrix",i)]], St_indic = St_opinion,dist = input$dist_select)
            }
            if(input$opinion_type == "survival"){
              output_pool[[2]] <- output_pool[[2]]+ xlim(c(0,1)) #If survival we want to truncate.
            }
            if(input$n_expert == 1){
              output_pool[[2]][["layers"]][[3]] <-NULL
              output_pool[[2]][["layers"]][[2]] <-NULL
            }  

            value[[paste0("expert_plot",i)]] <- output_pool[[2]]
            times_expert = input[[paste0("time",i)]]
            times_expert_vec <- c(times_expert_vec, times_expert)
            df.curr <-  subset(output_pool[[2]]$data, ftype == input$pool_type_eval)
            df.curr <- rename(df.curr,y = x)
            
            scale_vec <- c(scale_vec,final_scale*(input$xlim-times_expert)/max(df.curr$fx))
            df.linear[[i]] <- df.curr
            output_pool[[1]][,"dist"] <- gsub("normal", "norm", output_pool[[1]][,"dist"])
            param_expert[[i]] <- output_pool[[1]]
          }
          
          for(i in 1:input$n_timepoint){
            df.linear[[i]] <- mutate(df.linear[[i]],x = times_expert_vec[i] + fx*min(scale_vec), 
                     times_expert = times_expert_vec[i])
            df.linear_all <- rbind(df.linear_all, df.linear[[i]])
          }
          
          
          
          value$param_expert <- param_expert
          value$timepoint_expert <- times_expert_vec
          value$df.linear_all <- df.linear_all
          
          if(input$opinion_type == "survival"){
            plot_fit <- plot_fit+
              geom_ribbon(data = df.linear_all, aes(x = x, y = y, xmin= x, xmax =times_expert, group=times_expert), 
                          fill = "sky blue", alpha = 0.5, colour = "grey")
          }
          
          
        }
        
        output$plot_km_expert1<- renderPlot(plot_fit)
        
      }  
      
    })
    
    
    
    observeEvent(input$n_timepoint, {
      
      if(input$n_timepoint > 1){
        shiny::showTab(inputId = "Timepoints", target = "Timepoints1")
        shiny::showTab(inputId = "Timepoints", target = "Timepoints2")
      }
      if(input$n_timepoint == 1){
        shiny::showTab(inputId = "Timepoints", target = "Timepoints1")
        shiny::hideTab(inputId = "Timepoints", target = "Timepoints2")
      }
    })
    
    observeEvent(input$opinion_type,{
      shinyjs::hide("plot_gof")
      if(input$opinion_type == "survival"){
        
        updateSelectInput(session,"id_trt", label = "Select treatment ID corresponding to expert opinion")
        
        
        shinyjs::show("time1")
        if(input$n_timepoint > 1){
          shiny::showTab(inputId = "Timepoints", target = "Timepoints1")
          shiny::showTab(inputId = "Timepoints", target = "Timepoints2")
        }
        if(input$n_timepoint == 1){
          shiny::showTab(inputId = "Timepoints", target = "Timepoints1")
          shiny::hideTab(inputId = "Timepoints", target = "Timepoints2")
        }
        
      }
      
      if(input$opinion_type == "mean"){
        
        updateSelectInput(session,"id_trt", label = "Select treatment ID corresponding to expert opinion - Mean difference of selected treatment vs other treatment")
        shiny::showTab(inputId = "Timepoints", target = "Timepoints1")
        shinyjs::hide("time1")
        shiny::hideTab(inputId = "Timepoints", target = "Timepoints2")
      }
      
      if(input$opinion_type == "no_expert"){
        shiny::hideTab(inputId = "Timepoints", target = "Timepoints1")
        shiny::hideTab(inputId = "Timepoints", target = "Timepoints2")
      }
      
      if(input$opinion_type == "survival" | input$opinion_type == "mean"){
        shinyjs::show("n_expert")
        if(input$opinion_type == "survival" ){
          shinyjs::show("n_timepoint") 
        }else{
          shinyjs::hide("n_timepoint")
        }
        
        shinyjs::show("expert_opt")
        #browser()
        if(input$expert_opt){
          shinyjs::show("pool_type_eval")
          shinyjs::show("dist_select")
          shinyjs::show("MLV_opt")
        }else{
          shinyjs::hide("pool_type_eval")
          shinyjs::hide("dist_select")
          shinyjs::hide("MLV_opt")
        }
        
        if(is.null(value$id_trt)){
          
          shinyjs::hide("id_trt")
        }else{
          shinyjs::show("id_trt")
        }
        
        
      }else{ #No Expert Opinion
        shinyjs::hide("n_expert")
        shinyjs::hide("n_timepoint")
        shinyjs::hide("expert_opt")
        shinyjs::hide("MLV_opt")
        shinyjs::hide("pool_type_eval")
        shinyjs::hide("dist_select")
        shinyjs::hide("id_trt")
        
      }
      
    })
    
    observeEvent(input$id_trt,{
      value$id_trt <- input$id_trt
    })
    
    observeEvent(input$n_expert, {
      # browser()
      if(input$n_expert == 1){
        #shinyjs::hideElement(id = "pool_type_eval")
        shinyjs::hide("pool_type_eval")
        
      }else{
        #shinyjs::showElement(id = "pool_type_eval")
        shinyjs::show("pool_type_eval")
      }
      
      for(i in 1:2){ #Modify this force it to me 2 which is the max number of timepoints
        mat_exist <- input[[paste0("matrix",i)]]
        #browser()
        mat_exist_mode <- input[[paste0("matrix",i,"_mode")]]
        
        if(input$n_expert > value$n_expert_prev){
          extra_cols <- input$n_expert - value$n_expert_prev 
          mat_bind <- matrix(nrow = nrow(mat_exist), ncol = extra_cols)
          mat_exist <- cbind(mat_exist,mat_bind)
          
          mat_bind_mode <- matrix(nrow = nrow(mat_exist_mode), ncol = extra_cols)
          mat_exist_mode <- cbind(mat_exist_mode,mat_bind_mode)
          
        }else if(input$n_expert == value$n_expert_prev){
        } else{
          mat_exist <- mat_exist[,1:(input$n_expert+1),drop = F]
          mat_exist_mode <- mat_exist_mode[,1:(input$n_expert),drop = F]
        }
        colnames(mat_exist) <- c("Cum Prob", paste0("Expert_", 1:input$n_expert))
        shinyMatrix::updateMatrixInput(session, paste0("matrix",i), value=mat_exist )
        
        colnames(mat_exist_mode) <-  paste0("Expert_", 1:input$n_expert)
        shinyMatrix::updateMatrixInput(session, paste0("matrix",i,"_mode"), value=mat_exist_mode )
      }
      value$n_expert_prev <- input$n_expert
      
    })
    
    
    toListen <- reactive({
      list(input$quant_vec1,input$quant_vec2)
    })
    
    observeEvent(toListen(),{
      
      for(i in 1:input$n_timepoint){#max number of quant_vec
        #browser()
        if(!is.null(input[[paste0("quant_vec",i)]])){
          quant_vec_temp <- input[[paste0("quant_vec",i)]]
          quant_num <- as.numeric(unlist(strsplit(quant_vec_temp,",")))
          if(length(quant_num)==0){
            new_mat <-   matrix(ncol = input$n_expert +1, nrow = 1) # Handle case when nothing is entered
            colnames(new_mat) <- c("Cum Prob", paste0("Expert_",1:input$n_expert ))
            
          }else{
            mat_exist <- input[[paste0("matrix",i)]]
            retain_quant_index <-which(mat_exist[,1] %in% quant_num)
            retain_quant <- mat_exist[retain_quant_index,1]
            change_quant_index <- which(quant_num %!in% retain_quant)
            new_mat <- matrix(ncol = input$n_expert +1, nrow = length(quant_num))
            colnames(new_mat) <- c("Cum Prob", paste0("Expert_",1:input$n_expert ))
            
            if(length(retain_quant_index)>0){
              new_mat[1:length(retain_quant_index),] <-mat_exist[retain_quant_index,]
              
            }
            if(length(change_quant_index)>0){
              new_mat[(length(retain_quant_index)+1):nrow(new_mat),1] <- quant_num[change_quant_index]
            }
          }
          shinyMatrix::updateMatrixInput(session, paste0("matrix",i), value=new_mat)
          
        }
      }})
    
    
    
    observeEvent(input$run_analysis, {
      
      if(input$id_trt == ""){
        id_trt_work<- 1
      }else{
        #browser()
        id_trt_work<- min(which(as.character(value$df_work[["arm"]]) == input$id_trt))
      }
      
      if(input$opinion_type == "mean"){
        id_comp_work<- min(which(as.character(value$df_work[["arm"]]) != input$id_trt))
        timepoint_expert_work <- NULL 
      }else{
        id_comp_work <- NULL
        timepoint_expert_work <- value$timepoint_expert
      }
      
      
      if(length(unique(value$df_work[["arm"]]))==1){
        formula_text <- "Surv(time,status)~1"
        id_trt_work<- id_comp_work<- id_St <- NULL
        
      }else{
        formula_text <- "Surv(time,status)~factor(arm)"
      }
      #browser()
      if(!is.null(value$param_expert)& input$opinion_type != "no_expert"){
        #browser()
        mod_fit  <- try({fit.models.expert(formula=as.formula(formula_text),data=value$df_work,
                                           distr=input$param_mod,
                                           method=input$stat_type,
                                           pool_type = input$pool_type_eval,#"log pool", 
                                           opinion_type = input$opinion_type,
                                           times_expert = timepoint_expert_work, 
                                           param_expert = value$param_expert,
                                           id_trt = id_trt_work,
                                           id_comp = id_comp_work,
                                           id_St  = id_trt_work,
                                           k = 1,
                                           iter = input$iterations,
                                           compile_mods = compile_mods)})
        value$mod_fit <- mod_fit
      }
      
      if(input$opinion_type == "no_expert"){
        
        mod_fit  <- fit.models.expert(formula=as.formula(formula_text),data=value$df_work,
                                      distr=input$param_mod,
                                      method=input$stat_type, k = 1)
        
        value$mod_fit <- mod_fit
      }
      
    })
    
    value$plot_km_expert1 <- eventReactive(value$mod_fit,{
      validate(need(class(value$mod_fit)!="try-error","Model estimation failed; Note Frequentist approach is typically much more fragile when expert opinion is in conflict with the data." ))
      
      if(input$incl_psa == "yes"){
        if(input$stat_type == "bayes"){
          nsim_eval <- input$iterations
        }else{
          nsim_eval <- 1000
        }
        plot_ci <- TRUE
        
      }else{
        nsim_eval <- 1
        plot_ci <- FALSE
      }
        
      if(input$opinion_type == "survival"){
          plot(value$mod_fit, add.km = TRUE,t = seq(0,input$xlim,length.out = 100),nsim  = nsim_eval, plot_ci = plot_ci)+
            geom_ribbon(data = value$df.linear_all, aes(x = x, y = y, xmin= x, xmax =times_expert, group=times_expert), 
                        fill = "sky blue", alpha = 0.5, colour = "grey")
          
        }else{
          plot(value$mod_fit, add.km = TRUE,t = seq(0,input$xlim,length.out = 100),nsim  = nsim_eval, plot_ci = plot_ci)
          
        } 
        
        
    })
    
    
    value$plot_gof <- eventReactive(value$mod_fit,{
      #browser()
      model.fit.plot(value$mod_fit,type = input$gof_type)
    })
    
    observeEvent(input$update_expert, {
      for (i in 1:input$n_timepoint) {
        local({
          j <- i  # Use a local variable to ensure correct value in the loop
          output[[paste0("expert_plot", j)]] <- renderPlot({
            value[[paste0("expert_plot", j)]]
          })
        })
      }
      shinyjs::hide("plot_gof")
    })
    
    
    observeEvent(input$run_analysis, {
      # browser()
      output$plot_km_expert1 <- renderPlot(
        value$plot_km_expert1())
      
      output$plot_gof <- renderPlot(
        value$plot_gof())
      
      shinyjs::show("plot_gof")
      
    })
    
    # observeEvent(input$save_output,{
    #   #browser()
    #   list_output <- list(model = value$mod_fit, surv_plt = value$plot_km_expert1(), gof_plt = value$plot_gof())
    #   
    #   
    #   #Need to fix this code chunk
    #   if(input$opinion_type != "no_expert"){
    #   for(i in 1:input$n_timepoint){
    #     list_output[[paste0("Timepoint",i)]] <- value[[paste0("expert_plot",i)]] 
    #   }
    #   }
    #   saveRDS(list_output,
    #           file = paste0(input$file_name,".rds"))
    #   
    #   #readRDS(file = paste0(input$file_name,".rds"))
    # })
    
    output$save_output <- downloadHandler(filename = paste0(input$file_name,".rds"),
                                          content = function(file){
                                            #browser()
                                            list_output <- list(model = value$mod_fit)
                                            #Need to fix this code chunk
                                            if(input$opinion_type != "no_expert"){
                                              for(i in 1:input$n_timepoint){
                                                list_output[[paste0("Timepoint",i)]] <- value[[paste0("expert_plot",i)]] 
                                              }
                                            }
                                            saveRDS(list_output,
                                                    file = file)
                                          })
    
    # observeEvent(input$save_output,{
    #   #browser()
    #   list_output <- list(model = value$mod_fit, surv_plt = value$plot_km_expert1(), gof_plt = value$plot_gof())
    #   
    #   
    #   #Need to fix this code chunk
    #   if(input$opinion_type != "no_expert"){
    #     for(i in 1:input$n_timepoint){
    #       list_output[[paste0("Timepoint",i)]] <- value[[paste0("expert_plot",i)]] 
    #     }
    #   }
    #   saveRDS(list_output,
    #           file = paste0(input$file_name,".rds"))
    #   
    #   #readRDS(file = paste0(input$file_name,".rds"))
    # })
    
    
    output$report <- downloadHandler(filename = function() {
      switch(input$outFormat, 
             html_document = paste0(input$file_name,"-report.html"), 
             pdf_document = paste0(input$file_name, "-report.pdf"),
             word_document = paste0(input$file_name,"-report.docx"))
    }, content = function(file) {
      
      #Will need these lines later
      # tempReport <- file.path(tempdir(), "elicitationShinySummary.Rmd")
      # file.copy(system.file("shinyAppFiles", "elicitationShinySummary.Rmd", 
      #                       package = "SHELF"), tempReport, overwrite = TRUE)
      
      list_output <- list(fit = value$mod_fit, 
                          surv_plt = value$plot_km_expert1(), 
                          gof_plt = value$plot_gof(),
                          xlim = input$xlim,
                          n_timepoint = input$n_timepoint,
                          opinion_type = input$opinion_type)
      
      if(input$opinion_type != "no_expert"){
        for(i in 1:input$n_timepoint){
          list_output[[paste0("expert_plot",i)]] <- value[[paste0("expert_plot",i)]] 
        }
      }
      
      
      
      file_pathway <- system.file("Report", "Generate-Report.Rmd", package = "expertsurv")
      if (file_pathway == "") {
        stop("File Generate-Report.Rmd not found.")
      }
      
      tempReport <- file.path(paste0(tempdir(), "\\Generate-Report.Rmd"))
      file.copy(file_pathway , tempReport, overwrite = TRUE)
      
      # rmarkdown::render(tempReport, output_file = file, #File Name
      #                   params = params, output_format = input$outFormat,
      #                   envir = new.env(parent = globalenv()))
          
      
      template <- use_parameters(tempReport, names(list_output),
                                 is.file = TRUE)
      writeLines(template,tempReport)
      
      rmarkdown::render(tempReport, output_file = file, #File Name
                        params = list_output, output_format = input$outFormat,
                        envir = new.env(parent = globalenv()))
      
      
    })
    
    
    
    
  }}
  

  shinyApp(ui = ui, server = create_server(compile_mods = compile_mods))
  

Try the expertsurv package in your browser

Any scripts or data that you put into this service are public.

expertsurv documentation built on April 3, 2025, 10:37 p.m.