Nothing
faeff <- 2
fA <- 3
fbeff <- 0.5
fB <- 2
test_that("different dimensions of mean and correlation throws error", {
fwithin <-"fA"
rho <- 0.8
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
expect_error(gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[2], nlfB = facdim[2]))
expect_error(gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[1]))
})
test_that("transferability of level labels", {
fwithin <-"fA"
rho <- 0.8
##test with 'small' number of levels
factors_levels <- list(treatment=letters[1:fA], time=c("before", "after"))
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
label_list = factors_levels,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
vec1 <- rep(dimnames(meansd_mats[[1]])[[1]], each=fB)
vec2 <- rep(dimnames(meansd_mats[[1]])[[2]], fA)
expect_identical(paste(vec1, vec2, sep = "_"), colnames(cor_mat))
##test with 'large' number of levels
fA <- 5
fB <- 3
factors_levels <- list(treatment=letters[1:fA], time=c("before", "during", "after"))
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
label_list = factors_levels,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
vec1 <- rep(dimnames(meansd_mats[[1]])[[1]], each=fB)
vec2 <- rep(dimnames(meansd_mats[[1]])[[2]], fA)
expect_identical(paste(vec1, vec2, sep = "_"), colnames(cor_mat))
##test with same number of levels for both factors
fA <- 4
fB <- 4
factors_levels <- list(treatment=letters[1:fA], time=c("before", "early", "late", "after"))
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
label_list = factors_levels,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
vec1 <- rep(dimnames(meansd_mats[[1]])[[1]], each=fB)
vec2 <- rep(dimnames(meansd_mats[[1]])[[2]], fA)
expect_identical(paste(vec1, vec2, sep = "_"), colnames(cor_mat))
})
test_that("label incompatibilities are detected", {
##factors are inverted
fA <- 3
fB <- 3
fwithin <-"fA"
rho <- 0.8
factors_levels <- list(treatment=letters[1:fA], time=c("before", "during", "after"))
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
label_list = factors_levels,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
expect_error(gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2],
label_list = rev(factors_levels)))
##different classes
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2],
label_list = list(treatment=as.character(factors_levels$treatment), time=factors_levels$time))
expect_true(is(cor_mat, "matrix"))
})
test_that("error is shown when rho is out of format", {
fwithin <-"fA"
rho <- c(0.4, 0.2, 0.3)
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
expect_error(gencorrelationmat(meansd_mats[[1]], rho=rho, withinf = fwithin, nlfA = 3, nlfB = 2))
})
test_that("correlation input format and design are consistent", {
fwithin <-"fA"
rho <- matrix(c(0.4, 0.2, 0.3, 0.1), 2, 2)
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
expect_error(gencorrelationmat(meansd_mats[[1]], rho=rho, withinf = fwithin, nlfA = 3, nlfB = 2))
})
test_that("warning appears when late labelling is used", {
fwithin <-"fA"
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
levels_list <- list(treatment=c("control", "MedA", "MedB"), time=c("before", "after"))
expect_warning(gencorrelationmat(meansd_mats[[1]], rho=0.8, withinf = fwithin, nlfA = 3, nlfB = 2,
label_list = levels_list))
})
##fixed correlation
test_that("correlation when factor A is the repeated factor", {
fwithin <-"fA"
#positive correlation
rho <- 0.8
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("_a", names(cor_mat[,1])),grep("_a", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("_b", names(cor_mat[,1])),grep("_b", names(cor_mat[1,]))]
expect_identical(unique(c(levbcor, levacor)), c(1, rho))
#negative correlation
rho <- -0.8
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("_a", names(cor_mat[,1])),grep("_a", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("_b", names(cor_mat[,1])),grep("_b", names(cor_mat[1,]))]
expect_identical(unique(c(levbcor, levacor)), c(1, rho))
})
test_that("correlation when factor B is the repeated factor", {
faeff <- 2
fA <- 2
fbeff <- 3
fB <- 3
fwithin <- "fB"
##positive correlation
rho <- 0.9
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("A_", names(cor_mat[,1])),grep("A_", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("B_", names(cor_mat[,1])),grep("B_", names(cor_mat[1,]))]
expect_identical(unique(c(levbcor, levacor)), c(1, rho))
##negative correlation
rho <- -0.9
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("A_", names(cor_mat[,1])),grep("A_", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("B_", names(cor_mat[,1])),grep("B_", names(cor_mat[1,]))]
expect_identical(unique(c(levbcor, levacor)), c(1, rho))
})
test_that("correlation when both factors are repeated", {
faeff <- 2
fA <- 2
fbeff <- 3
fB <- 3
fwithin <- "both"
#positive correlation
rho <- 0.9
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
triupper <- cor_mat[upper.tri(cor_mat)]
trilower <- cor_mat[lower.tri(cor_mat)]
expect_true(all(c(triupper, trilower)==rho & all(diag(cor_mat)==1)))
#negative correlation
rho <- -0.9
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
triupper <- cor_mat[upper.tri(cor_mat)]
trilower <- cor_mat[lower.tri(cor_mat)]
expect_true(all(c(triupper, trilower)==rho & all(diag(cor_mat)==1)))
})
##correlation gradient
test_that("correlation gradient when factor A is the repeated factor", {
fwithin <-"fA"
fA <- 4
fB <- 3
#positive correlation
rho <- c(-0.8, 0)
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("_a", names(cor_mat[,1])),grep("_a", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("_b", names(cor_mat[,1])),grep("_b", names(cor_mat[1,]))]
topvector <- c(1, seq(rho[1], rho[2], length.out=fA-1))
expect_identical(as.vector(levacor[1,]), topvector)
expect_identical(as.vector(levacor[fA,]), rev(topvector))
expect_identical(as.vector(levbcor[,1]), topvector)
expect_identical(as.vector(levbcor[,fA]), rev(topvector))
#negative correlation
rho <- c(-0.8, 0)
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("_a", names(cor_mat[,1])),grep("_a", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("_b", names(cor_mat[,1])),grep("_b", names(cor_mat[1,]))]
topvector <- c(1, seq(rho[1], rho[2], length.out=fA-1))
expect_identical(as.vector(levacor[1,]), topvector)
expect_identical(as.vector(levacor[fA,]), rev(topvector))
expect_identical(as.vector(levbcor[,1]), topvector)
expect_identical(as.vector(levbcor[,fA]), rev(topvector))
})
test_that("correlation gradient when factor B is the repeated factor", {
fwithin <-"fB"
fA <- 4
fB <- 6
#positive correlation gradient
rho <- c(0.8, 0.2)
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("A_", names(cor_mat[,1])),grep("A_", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("B_", names(cor_mat[,1])),grep("B_", names(cor_mat[1,]))]
topvector <- c(1, seq(rho[1], rho[2], length.out=fB-1))
expect_identical(as.vector(levacor[1,]), topvector)
expect_identical(as.vector(levacor[fB,]), rev(topvector))
expect_identical(as.vector(levbcor[,1]), topvector)
expect_identical(as.vector(levbcor[,fB]), rev(topvector))
#negative correlation
rho <- c(-0.8, 0)
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("A_", names(cor_mat[,1])),grep("A_", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("B_", names(cor_mat[,1])),grep("B_", names(cor_mat[1,]))]
topvector <- c(1, seq(rho[1], rho[2], length.out=fB-1))
expect_identical(as.vector(levacor[1,]), topvector)
expect_identical(as.vector(levacor[fB,]), rev(topvector))
expect_identical(as.vector(levbcor[,1]), topvector)
expect_identical(as.vector(levbcor[,fB]), rev(topvector))
})
test_that("correlation gradient when both factors are repeated", {
fwithin <-"both"
fA <- 4
fB <- 6
#positive correlation gradient
rho <- matrix(c(0.8, -0.8, 0.2, -0.1), 2, 2)
meansd_mats <- calculate_mean_matrix(refmean = 10, nlfA = fA, nlfB = fB,
fAeffect = faeff, fBeffect = fbeff,
plot = FALSE)
facdim <- dim(meansd_mats[[1]])
cor_mat <- gencorrelationmat(meansd_mats[[1]],
rho = rho, withinf =fwithin,
nlfA = facdim[1], nlfB = facdim[2])
levacor <- cor_mat[grep("A_", names(cor_mat[,1])),grep("A_", names(cor_mat[1,]))]
levbcor <- cor_mat[grep("B_", names(cor_mat[,1])),grep("B_", names(cor_mat[1,]))]
expect_identical(as.vector(levacor), as.vector(levbcor))
corleva <- cor_mat[grep("_a", names(cor_mat[,1])),grep("_a", names(cor_mat[1,]))]
corlevb <- cor_mat[grep("_b", names(cor_mat[,1])),grep("_b", names(cor_mat[1,]))]
expect_identical(as.vector(corleva), as.vector(corlevb))
topvector <- c(1, seq(rho[2,1], rho[2,2], length.out=fB-1))
expect_identical(as.vector(levacor[1,]), topvector)
expect_identical(as.vector(levacor[fB,]), rev(topvector))
topvector <- c(1, seq(rho[1,1], rho[1,2], length.out=fA-1))
expect_identical(as.vector(corleva[1,]), topvector)
expect_identical(as.vector(corleva[fA,]), rev(topvector))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.