R/MetricS4ConfusionMatrixMetrics.R

Defines functions .get_available_youden_metrics .get_available_specificity_metrics .get_available_sensitivity_metrics .get_available_ppv_metrics .get_available_npv_metrics .get_available_mcc_metrics .get_available_markedness_metrics .get_available_informedness_metrics .get_available_fdr_metrics .get_available_f1_score_metrics .get_available_cohen_kappa_metrics .get_available_balanced_error_rate_metrics .get_available_balanced_accuracy_metrics .get_available_accuracy_metrics .get_available_confusion_matrix_metrics ..aggregate_confusion_matrix_score ..aggregate_confusion_matrix ..compute_confusion_matrix_data

#' @include FamiliarS4Generics.R
#' @include FamiliarS4Classes.R
NULL

# familiarMetricCM -------------------------------------------------------------
setClass(
  "familiarMetricCM",
  contains = "familiarMetric")



# familiarMetricCMAveraging ----------------------------------------------------
setClass(
  "familiarMetricCMAveraging",
  contains = "familiarMetricCM",
  slots = list("averaging" = "character"),
  prototype = list("averaging" = "macro"))


# initialize -------------------------------------------------------------------
setMethod(
  "initialize",
  signature(.Object = "familiarMetricCMAveraging"),
  function(.Object, metric, ...) {
    # Update with parent class first.
    .Object <- callNextMethod()

    if (endsWith(x = metric, suffix = "_macro")) {
      .Object@averaging <- "macro"
      .Object@metric <- sub_last(
        x = metric,
        pattern = "_macro",
        replacement = "",
        fixed = TRUE)
      
    } else if (endsWith(x = metric, suffix = "_micro")) {
      .Object@averaging <- "micro"
      .Object@metric <- sub_last(
        x = metric,
        pattern = "_micro",
        replacement = "",
        fixed = TRUE)
      
    } else if (endsWith(x = metric, suffix = "_weighted")) {
      .Object@averaging <- "weighted"
      .Object@metric <- sub_last(
        x = metric,
        pattern = "_weighted",
        replacement = "",
        fixed = TRUE)
      
    } else {
      # Default setting.
      .Object@averaging <- "macro"
      .Object@metric <- metric
    }

    return(.Object)
  }
)



# is_available -----------------------------------------------------------------
setMethod(
  "is_available",
  signature(object = "familiarMetricCM"),
  function(object, ...) {
    return(object@outcome_type %in% c("binomial", "multinomial"))
  }
)



# accuracy ---------------------------------------------------------------------
setClass(
  "familiarMetricAccuracy",
  contains = "familiarMetricCM",
  prototype = methods::prototype(
    name = "Accuracy",
    value_range = c(0.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (accuracy) ---------------------------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricAccuracy"),
  function(metric, data, ...) {
    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Compute accuracy
    return(sum(cm$tp) / cm$n_samples)
  }
)



# balanced accuracy ------------------------------------------------------------
setClass(
  "familiarMetricBalancedAccuracy",
  contains = "familiarMetricCM",
  prototype = methods::prototype(
    name = "Balanced Accuracy",
    value_range = c(0.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (balanced accuracy) ------------------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricBalancedAccuracy"),
  function(metric, data, ...) {
    # Balanced accuracy [Brodersen, K. H., Ong, C. S., Stephan, K. E. & Buhmann,
    # J. M. The Balanced Accuracy and Its Posterior Distribution. in 2010 20th
    # International Conference on Pattern Recognition 3121–3124 (2010).]

    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Compute balanced accuracy
    return(sum(cm$tp / (cm$tp + cm$fn)) / cm$n_classes)
  }
)



# balanced error rate ----------------------------------------------------------
setClass(
  "familiarMetricBalancedErrorRate",
  contains = "familiarMetricCM",
  prototype = methods::prototype(
    name = "Balanced Error Rate",
    value_range = c(0.0, 1.0),
    higher_better = FALSE))



## compute_metric_score (balanced error) ---------------------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricBalancedErrorRate"),
  function(metric, data, ...) {
    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Compute balanced error rate
    return(sum(cm$fn / (cm$tp + cm$fn)) / cm$n_classes)
  }
)



# Cohen's kappa ----------------------------------------------------------------
setClass(
  "familiarMetricCohenKappa",
  contains = "familiarMetricCM",
  prototype = methods::prototype(
    name = "Cohen's Kappa",
    value_range = c(-1.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (Cohen's kappa) ----------------------------------------
setMethod(
  "compute_metric_score", signature(metric = "familiarMetricCohenKappa"),
  function(metric, data, ...) {
    # Cohen's kappa [Cohen, J. A Coefficient of Agreement for Nominal Scales.
    # Educ. Psychol. Meas. 20, 37–46 (1960).]
    #
    # Implementation after
    # https://stats.stackexchange.com/questions/251165/cohens-kappa-with-three-categories-of-variable

    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Compute the observed agreement
    obs_agreement <- sum(cm$tp) / cm$n_samples

    # Agreement expected at random
    rand_agreement <- sum((cm$tp + cm$fp) * (cm$tp + cm$fn)) / cm$n_samples^2

    if (rand_agreement == 1.0 && obs_agreement == 1.0) {
      # Prevent division by zero for perfect predictions.
      return(1.0)
      
    } else {
      # Compute kappa
      return((obs_agreement - rand_agreement) / (1.0 - rand_agreement))
    }
  }
)


# F1 score ---------------------------------------------------------------------
setClass(
  "familiarMetricF1Score",
  contains = "familiarMetricCMAveraging",
  prototype = methods::prototype(
    name = "F1 score",
    value_range = c(0.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (F1 score) ---------------------------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricF1Score"),
  function(metric, data, ...) {
    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Aggregate confusion matrix.
    cm <- ..aggregate_confusion_matrix(
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    # Compute score
    score <- 2.0 * cm$tp / (2.0 * cm$tp + cm$fp + cm$fn)

    # Aggregate score.
    score <- ..aggregate_confusion_matrix_score(
      score = score,
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    return(score)
  }
)



# false discovery rate ---------------------------------------------------------
setClass(
  "familiarMetricFDR",
  contains = "familiarMetricCMAveraging",
  prototype = methods::prototype(
    name = "False Discovery Rate",
    value_range = c(0.0, 1.0),
    higher_better = FALSE))



## compute_metric_score (false discovery rate) ---------------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricFDR"),
  function(metric, data, ...) {
    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Aggregate confusion matrix.
    cm <- ..aggregate_confusion_matrix(
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    # Compute score.
    score <- cm$fp / (cm$tp + cm$fp)

    # Aggregate score.
    score <- ..aggregate_confusion_matrix_score(
      score = score,
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    return(score)
  }
)



# informedness -----------------------------------------------------------------
setClass(
  "familiarMetricInformedness",
  contains = "familiarMetricCM",
  prototype = methods::prototype(
    name = "Informedness",
    value_range = c(0.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (informedness) -----------------------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricInformedness"),
  function(metric, data, ...) {
    # Informedness [Powers, D. M. Evaluation: from precision, recall and
    # F-measure to ROC, informedness, markedness and correlation. International
    # Journal of Machine Learning Technology 2, 37–63 (2011).]
    #
    # See equations 28, 42.

    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Compute the score
    return(sum(cm$prevalence / (1.0 - cm$prevalence) * (cm$tp / (cm$tp + cm$fn) - cm$bias)))
  }
)



# markedness -------------------------------------------------------------------
setClass(
  "familiarMetricMarkedness",
  contains = "familiarMetricCM",
  prototype = methods::prototype(
    name = "Markedness",
    value_range = c(0.0, 1.0),
    higher_better = TRUE))



##### compute_metric_score (Markedness)#####
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricMarkedness"),
  function(metric, data, ...) {
    # Markedness [Powers, D. M. Evaluation: from precision, recall and F-measure
    # to ROC, informedness, markedness and correlation. International Journal of
    # Machine Learning Technology 2, 37–63 (2011).]
    #
    # See equations 29, 43.

    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Compute the score
    return(sum(cm$bias / (1.0 - cm$bias) * (cm$tp / (cm$tp + cm$fp) - cm$prevalence)))
  }
)



# Matthews` correlation coefficient --------------------------------------------
setClass(
  "familiarMetricMCC",
  contains = "familiarMetricCM",
  prototype = methods::prototype(
    name = "Matthews' Correlation Coefficient",
    value_range = c(-1.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (Matthews` correlation coefficient) --------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricMCC"),
  function(metric, data, ...) {
    # See [Jurman, G., Riccadonna, S. & Furlanello, C. A comparison of MCC and
    # CEN error measures in multi-class prediction. PLoS One 7, e41882 (2012);
    # Gorodkin, J. Comparing two K-category assignments by a K-category
    # correlation coefficient. Comput. Biol. Chem. 28, 367–374 (2004).]
    #
    # Mirrors scikit-learn implementation.

    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data, 
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Compute the score
    cov_obs_pred <- sum(cm$tp) / cm$n_samples - sum(cm$prevalence * cm$bias)
    cov_obs_obs <- 1.0 - sum(cm$prevalence * cm$prevalence)
    cov_pred_pred <- 1.0 - sum(cm$bias * cm$bias)

    if (cov_obs_obs == 0.0 || cov_pred_pred == 0.0) {
      return(0.0)
      
    } else {
      return(cov_obs_pred / sqrt(cov_obs_obs * cov_pred_pred))
    }
  }
)



# negative predictive value ----------------------------------------------------
setClass("familiarMetricNPV",
  contains = "familiarMetricCMAveraging",
  prototype = methods::prototype(
    name = "Negative Predictive Value",
    value_range = c(0.0, 1.0),
    higher_better = TRUE
  )
)



## compute_metric_score (negative predictive value) ----------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricNPV"),
  function(metric, data, ...) {
    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data, 
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Aggregate confusion matrix.
    cm <- ..aggregate_confusion_matrix(
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    # Compute NPV
    score <- cm$tn / (cm$tn + cm$fn)

    # Aggregate score.
    score <- ..aggregate_confusion_matrix_score(
      score = score,
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    return(score)
  }
)



# positive predictive value ----------------------------------------------------
setClass(
  "familiarMetricPPV",
  contains = "familiarMetricCMAveraging",
  prototype = methods::prototype(
    name = "Positive Predictive Value",
    value_range = c(0.0, 1.0),
    higher_better = TRUE))





## compute_metric_score (Positive predictive value) ----------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricPPV"),
  function(metric, data, ...) {
    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Aggregate confusion matrix.
    cm <- ..aggregate_confusion_matrix(
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    # Compute PPV.
    score <- cm$tp / (cm$tp + cm$fp)

    # Aggregate score.
    score <- ..aggregate_confusion_matrix_score(
      score = score,
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    return(score)
  }
)



# sensitivity ------------------------------------------------------------------
setClass(
  "familiarMetricSensitivity",
  contains = "familiarMetricCMAveraging",
  prototype = methods::prototype(
    name = "Sensitivity",
    value_range = c(0.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (Sensitivity) ------------------------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricSensitivity"),
  function(metric, data, ...) {
    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Aggregate confusion matrix.
    cm <- ..aggregate_confusion_matrix(
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    # Compute sensitivity
    score <- cm$tp / (cm$tp + cm$fn)

    # Aggregate score.
    score <- ..aggregate_confusion_matrix_score(
      score = score,
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    return(score)
  }
)



# specificity ------------------------------------------------------------------
setClass(
  "familiarMetricSpecificity",
  contains = "familiarMetricCMAveraging",
  prototype = methods::prototype(
    name = "Specificity",
    value_range = c(0.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (specificity) ------------------------------------------
setMethod(
  "compute_metric_score",
  signature(metric = "familiarMetricSpecificity"),
  function(metric, data, ...) {
    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Aggregate confusion matrix.
    cm <- ..aggregate_confusion_matrix(
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    # Compute specificity.
    score <- cm$tn / (cm$tn + cm$fp)

    # Aggregate score.
    score <- ..aggregate_confusion_matrix_score(
      score = score,
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    return(score)
  }
)


# Youden's index ---------------------------------------------------------------
setClass(
  "familiarMetricYouden",
  contains = "familiarMetricCMAveraging",
  prototype = methods::prototype(
    name = "Youden's J Statistic",
    value_range = c(-1.0, 1.0),
    higher_better = TRUE))



## compute_metric_score (Youden's index) ---------------------------------------
setMethod(
  "compute_metric_score", 
  signature(metric = "familiarMetricYouden"),
  function(metric, data, ...) {
    # Youden's J index [Youden, W. J. Index for rating diagnostic tests. Cancer
    # 3, 32–35 (1950).]

    # Compute data from the confusion metrics.
    cm <- ..compute_confusion_matrix_data(
      data = data,
      outcome_type = metric@outcome_type)

    if (is.null(cm)) return(callNextMethod())

    # Aggregate confusion matrix.
    cm <- ..aggregate_confusion_matrix(
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    # Compute Youden index.
    score <- cm$tp / (cm$tp + cm$fn) + cm$tn / (cm$tn + cm$fp) - 1.0

    # Aggregate score.
    score <- ..aggregate_confusion_matrix_score(
      score = score,
      cm = cm,
      averaging = metric@averaging,
      outcome_type = metric@outcome_type)

    return(score)
  }
)



..compute_confusion_matrix_data <- function(data, outcome_type) {
  # Suppress NOTES due to non-standard evaluation in data.table
  predicted_class <- NULL

  # Get the classes and number of classes in data.
  outcome_classes <- get_outcome_class_levels(
    data,
    outcome_type = outcome_type)
  n_classes <- length(outcome_classes)

  # Remove any entries that lack valid predictions.
  data <- remove_nonvalid_predictions(
    prediction_table = data,
    outcome_type = outcome_type)

  # Remove any entries that lack observed values.
  data <- remove_missing_outcomes(
    data = data,
    outcome_type = outcome_type)

  if (is_empty(data)) return(NULL)

  # Create empty scalars
  tp <- tn <- fp <- fn <- prevalence <- bias <- numeric(n_classes)

  # Total number of samples
  n_samples <- nrow(data)

  # Get the outcome column.
  outcome_column <- get_outcome_columns(outcome_type)

  # Iterate over positive classes
  for (ii in seq_along(outcome_classes)) {
    # Determine true positives, true negatives, false positives and false negatives
    tp[ii] <- nrow(data[predicted_class == outcome_classes[ii] & get(outcome_column) == outcome_classes[ii], ])
    tn[ii] <- nrow(data[predicted_class != outcome_classes[ii] & get(outcome_column) != outcome_classes[ii], ])
    fp[ii] <- nrow(data[predicted_class == outcome_classes[ii] & get(outcome_column) != outcome_classes[ii], ])
    fn[ii] <- nrow(data[predicted_class != outcome_classes[ii] & get(outcome_column) == outcome_classes[ii], ])

    # Prevalence (fraction of observed outcome_column class)
    prevalence[ii] <- nrow(data[get(outcome_column) == outcome_classes[ii]]) / n_samples

    # Bias (fraction of predicted positive class)
    bias[ii] <- nrow(data[predicted_class == outcome_classes[ii]]) / n_samples
  }

  return(list(
    "tp" = tp,
    "tn" = tn,
    "fp" = fp,
    "fn" = fn,
    "prevalence" = prevalence,
    "bias" = bias,
    "n_samples" = n_samples,
    "n_classes" = n_classes))
}



..aggregate_confusion_matrix <- function(cm, averaging, outcome_type) {
  if (outcome_type == "binomial") {
    # Use second class as positive class
    return(list(
      "tp" = cm$tp[2],
      "tn" = cm$tn[2],
      "fp" = cm$fp[2],
      "fn" = cm$fn[2],
      "prevalence" = 1.0,
      "bias" = 1.0,
      "n_samples" = cm$n_samples,
      "n_classes" = 1.0))
    
  } else if (outcome_type == "multinomial") {
    if (averaging == "micro") {
      # Merge confusion matrix for micro-averaging.
      return(list(
        "tp" = sum(cm$tp),
        "tn" = sum(cm$tn),
        "fp" = sum(cm$fp),
        "fn" = sum(cm$fn),
        "prevalence" = 1.0,
        "bias" = 1.0,
        "n_samples" = cm$n_classes * cm$n_samples,
        "n_classes" = 1.0))
      
    } else {
      # No changes are needed.
      return(cm)
    }
    
  } else {
    ..error_no_known_outcome_type(outcome_type)
  }
}



..aggregate_confusion_matrix_score <- function(score, cm, averaging, outcome_type) {
  # Replace all non-finite values.
  score[!is.finite(score)] <- NA_real_

  if (all(is.na(score))) return(NA_real_)

  # Aggregation is only required for multinomial outcomes.
  if (outcome_type == "multinomial") {
    if (averaging == "weighted") {
      # Weighted averaging
      score <- sum(cm$prevalence * score, na.rm = TRUE)
      
    } else if (averaging == "macro") {
      # Compute the average.
      score <- mean(score, na.rm = TRUE)
      
    } else if (averaging == "micro") {
      # Micro averaging
      score <- score
      
    } else {
      ..error_reached_unreachable_code(
        "..aggregate_confusion_matrix_score: encountered unknown averaging method.")
    }
  }

  return(score)
}



.get_available_confusion_matrix_metrics <- function() {
  return(c(
    .get_available_accuracy_metrics(),
    .get_available_balanced_accuracy_metrics(),
    .get_available_balanced_error_rate_metrics(),
    .get_available_cohen_kappa_metrics(),
    .get_available_f1_score_metrics(),
    .get_available_fdr_metrics(),
    .get_available_informedness_metrics(),
    .get_available_markedness_metrics(),
    .get_available_mcc_metrics(),
    .get_available_npv_metrics(),
    .get_available_ppv_metrics(),
    .get_available_sensitivity_metrics(),
    .get_available_specificity_metrics(),
    .get_available_youden_metrics()))
}



.get_available_accuracy_metrics <- function() {
  return(c("accuracy"))
}

.get_available_balanced_accuracy_metrics <- function() {
  return(c("balanced_accuracy", "bac"))
}

.get_available_balanced_error_rate_metrics <- function() {
  return(c("balanced_error_rate", "ber"))
}

.get_available_cohen_kappa_metrics <- function() {
  return(c("cohen_kappa", "kappa"))
}

.get_available_f1_score_metrics <- function() {
  return(paste0("f1_score", c("", "_micro", "_macro", "_weighted")))
}

.get_available_fdr_metrics <- function() {
  return(c(
    paste0("fdr", c("", "_micro", "_macro", "_weighted")),
    paste0("false_discovery_rate", c("", "_micro", "_macro", "_weighted"))))
}

.get_available_informedness_metrics <- function() {
  return("informedness")
}

.get_available_markedness_metrics <- function() {
  return("markedness")
}

.get_available_mcc_metrics <- function() {
  return(c("mcc", "matthews_correlation_coefficient"))
}

.get_available_npv_metrics <- function() {
  return(c(
    paste0("npv", c("", "_micro", "_macro", "_weighted")),
    paste0("negative_predictive_value", c("", "_micro", "_macro", "_weighted"))))
}

.get_available_ppv_metrics <- function() {
  return(c(
    paste0("ppv", c("", "_micro", "_macro", "_weighted")),
    paste0("positive_predictive_value", c("", "_micro", "_macro", "_weighted")),
    paste0("precision", c("", "_micro", "_macro", "_weighted"))))
}

.get_available_sensitivity_metrics <- function() {
  return(c(
    paste0("sensitivity", c("", "_micro", "_macro", "_weighted")),
    paste0("recall", c("", "_micro", "_macro", "_weighted")),
    paste0("tpr", c("", "_micro", "_macro", "_weighted")),
    paste0("true_positive_rate", c("", "_micro", "_macro", "_weighted"))))
}

.get_available_specificity_metrics <- function() {
  return(c(
    paste0("specificity", c("", "_micro", "_macro", "_weighted")),
    paste0("tnr", c("", "_micro", "_macro", "_weighted")),
    paste0("true_negative_rate", c("", "_micro", "_macro", "_weighted"))))
}

.get_available_youden_metrics <- function() {
  return(c(
    paste0("youden_j", c("", "_micro", "_macro", "_weighted")),
    paste0("youden_index", c("", "_micro", "_macro", "_weighted"))))
}

Try the familiar package in your browser

Any scripts or data that you put into this service are public.

familiar documentation built on Sept. 30, 2024, 9:18 a.m.