R/PlotUnivariateImportance.R

#' @include FamiliarS4Generics.R
#' @include FamiliarS4Classes.R
NULL


# plot_univariate_importance (generic) -----------------------------------------

#' @title Plot univariate importance.
#'
#' @description This function plots the univariate analysis data stored in a
#'   familiarCollection object.
#'
#' @param draw (*optional*) Draws the plot if TRUE.
#' @param dir_path (*optional*) Path to the directory where created figures are
#'   saved to. Output is saved in the `variable_importance` subdirectory. If
#'   NULL no figures are saved, but are returned instead.
#' @param p_adjustment_method (*optional*) Indicates type of p-value that is
#'   shown. One of `holm`, `hochberg`, `hommel`, `bonferroni`, `BH`, `BY`,
#'   `fdr`, `none`, `p_value` or `q_value` for adjusted p-values, uncorrected
#'   p-values and q-values. q-values may not be available.
#' @param show_cluster (*optional*) Show which features were clustered together.
#' @param ggtheme (*optional*) `ggplot` theme to use for plotting.
#' @param discrete_palette (*optional*) Palette used to fill the bars in case a
#'   non-singular variable was provided to the `color_by` argument.
#' @param gradient_palette (*optional*) Palette to use for filling the bars in
#'   case the `color_by` argument is not set. The bars are then coloured
#'   according to their importance. By default, no gradient is used, and the
#'   bars are not filled according to importance. Use `NULL` to fill the bars
#'   using the default palette in `familiar`.
#' @param significance_level_shown Position(s) to draw vertical lines indicating
#'   a significance level, e.g. 0.05. Can be NULL to not draw anything.
#' @param height (*optional*) Height of the plot. A default value is derived
#'   from the number of features and the number of facets.
#' @param width (*optional*) Width of the plot. A default value is derived from
#'   the number of facets.
#' @param units (*optional*) Plot size unit. Either `cm` (default), `mm` or
#'   `in`.
#' @param verbose Flag to indicate whether feedback should be provided for the
#'   plotting.
#' @param export_collection (*optional*) Exports the collection if TRUE.
#' @inheritParams export_univariate_analysis_data
#' @inheritParams export_feature_similarity
#' @inheritParams as_familiar_collection
#' @inheritParams .check_input_plot_args
#' @inheritParams .check_plot_splitting_variables
#' @inheritDotParams as_familiar_collection -object
#' @inheritDotParams ggplot2::ggsave -height -width -units -path -filename -plot
#' @inheritDotParams extract_univariate_analysis -object -feature_cluster_method -feature_linkage_method -feature_cluster_cut_method -verbose
#'
#' @details This function generates a horizontal barplot with the length of the
#'   bars corresponding to the 10-logarithm of the (multiple-testing corrected)
#'   p-value or q-value.
#'
#'   Features are assessed univariately using one-sample location t-tests after
#'   fitting a suitable regression model. The fitted model coefficient and the
#'   covariance matrix are then used to compute a p-value.
#'
#'   The following splitting variables are available for `split_by`, `color_by`
#'   and `facet_by`:
#'
#'  * `fs_method`: feature selection methods
#'
#'  * `learner`: learners
#'
#'  * `data_set`: data sets
#'
#'   Unlike for plots of feature ranking in feature selection and after
#'   modelling (as assessed by model-specific routines), clusters of features
#'   are now found during creation of underlying `familiarData` objects, instead
#'   of through consensus clustering. Hence, clustering results may differ due
#'   to differences in the underlying datasets.
#'
#'   Available palettes for `discrete_palette` and `gradient_palette` are those
#'   listed by `grDevices::palette.pals()` (requires R >= 4.0.0),
#'   `grDevices::hcl.pals()` (requires R >= 3.6.0) and `rainbow`, `heat.colors`,
#'   `terrain.colors`, `topo.colors` and `cm.colors`, which correspond to the
#'   palettes of the same name in `grDevices`. If not specified, a default
#'   palette based on palettes in Tableau are used. You may also specify your
#'   own palette by using colour names listed by `grDevices::colors()` or
#'   through hexadecimal RGB strings.
#'
#'   Labelling methods such as `set_fs_method_names` or `set_feature_names` can
#'   be applied to the `familiarCollection` object to update labels, and order
#'   the output in the figure.
#'
#' @return `NULL` or list of plot objects, if `dir_path` is `NULL`.
#'
#' @exportMethod plot_univariate_importance
#' @md
#' @rdname plot_univariate_importance-methods
setGeneric(
  "plot_univariate_importance",
  function(
    object,
    feature_cluster_method = waiver(),
    feature_linkage_method = waiver(),
    feature_cluster_cut_method = waiver(),
    feature_similarity_threshold = waiver(),
    draw = FALSE,
    dir_path = NULL,
    p_adjustment_method = waiver(),
    split_by = NULL,
    color_by = NULL,
    facet_by = NULL,
    facet_wrap_cols = NULL,
    show_cluster = TRUE,
    ggtheme = NULL,
    discrete_palette = NULL,
    gradient_palette = waiver(),
    x_label = waiver(),
    y_label = "feature",
    legend_label = waiver(),
    plot_title = waiver(),
    plot_sub_title = waiver(),
    caption = NULL,
    x_range = NULL,
    x_n_breaks = 5,
    x_breaks = NULL,
    significance_level_shown = 0.05,
    width = waiver(),
    height = waiver(),
    units = waiver(),
    verbose = TRUE,
    export_collection = FALSE,
    ...) {
    standardGeneric("plot_univariate_importance")
  }
)



# plot_univariate_importance (general) -----------------------------------------

#' @rdname plot_univariate_importance-methods
setMethod(
  "plot_univariate_importance",
  signature(object = "ANY"),
  function(
    object,
    feature_cluster_method = waiver(),
    feature_linkage_method = waiver(),
    feature_cluster_cut_method = waiver(),
    feature_similarity_threshold = waiver(),
    draw = FALSE,
    dir_path = NULL,
    p_adjustment_method = waiver(),
    split_by = NULL,
    color_by = NULL,
    facet_by = NULL,
    facet_wrap_cols = NULL,
    show_cluster = TRUE,
    ggtheme = NULL,
    discrete_palette = NULL,
    gradient_palette = waiver(),
    x_label = waiver(),
    y_label = "feature",
    legend_label = waiver(),
    plot_title = waiver(),
    plot_sub_title = waiver(),
    caption = NULL,
    x_range = NULL,
    x_n_breaks = 5,
    x_breaks = NULL,
    significance_level_shown = 0.05,
    width = waiver(),
    height = waiver(),
    units = waiver(),
    verbose = TRUE,
    export_collection = FALSE,
    ...) {
    # Attempt conversion to familiarCollection object.
    object <- do.call(
      as_familiar_collection,
      args = c(
        list(
          "object" = object,
          "data_element" = "univariate_analysis",
          "feature_cluster_method" = feature_cluster_method,
          "feature_linkage_method" = feature_linkage_method,
          "feature_cluster_cut_method" = feature_cluster_cut_method,
          "feature_similarity_threshold" = feature_similarity_threshold,
          "verbose" = verbose),
        list(...)))

    return(do.call(
      plot_univariate_importance,
      args = list(
        "object" = object,
        "feature_cluster_method" = feature_cluster_method,
        "feature_linkage_method" = feature_linkage_method,
        "feature_cluster_cut_method" = feature_cluster_cut_method,
        "feature_similarity_threshold" = feature_similarity_threshold,
        "draw" = draw,
        "dir_path" = dir_path,
        "p_adjustment_method" = p_adjustment_method,
        "split_by" = split_by,
        "color_by" = color_by,
        "facet_by" = facet_by,
        "facet_wrap_cols" = facet_wrap_cols,
        "show_cluster" = show_cluster,
        "ggtheme" = ggtheme,
        "discrete_palette" = discrete_palette,
        "gradient_palette" = gradient_palette,
        "x_label" = x_label,
        "y_label" = y_label,
        "legend_label" = legend_label,
        "plot_title" = plot_title,
        "plot_sub_title" = plot_sub_title,
        "caption" = caption,
        "x_range" = x_range,
        "x_n_breaks" = x_n_breaks,
        "x_breaks" = x_breaks,
        "significance_level_shown" = significance_level_shown,
        "width" = width,
        "height" = height,
        "units" = units,
        "verbose" = verbose,
        "export_collection" = export_collection)))
  }
)

# plot_univariate_importance (collection) --------------------------------------

#' @rdname plot_univariate_importance-methods
setMethod(
  "plot_univariate_importance",
  signature(object = "familiarCollection"),
  function(
    object,
    feature_cluster_method = waiver(),
    feature_linkage_method = waiver(),
    feature_cluster_cut_method = waiver(),
    feature_similarity_threshold = waiver(),
    draw = FALSE,
    dir_path = NULL,
    p_adjustment_method = waiver(),
    split_by = NULL,
    color_by = NULL,
    facet_by = NULL,
    facet_wrap_cols = NULL,
    show_cluster = TRUE,
    ggtheme = NULL,
    discrete_palette = NULL,
    gradient_palette = waiver(),
    x_label = waiver(),
    y_label = "feature",
    legend_label = waiver(),
    plot_title = waiver(),
    plot_sub_title = waiver(),
    caption = NULL,
    x_range = NULL,
    x_n_breaks = 5,
    x_breaks = NULL,
    significance_level_shown = 0.05,
    width = waiver(),
    height = waiver(),
    units = waiver(),
    verbose = TRUE,
    export_collection = FALSE,
    ...) {
    # Suppress NOTES due to non-standard evaluation in data.table
    value <- .NATURAL <- NULL

    # Make sure the collection object is updated.
    object <- update_object(object = object)

    # Check data ---------------------------------------------------------------

    # Get input data.
    x <- export_univariate_analysis_data(
      object = object,
      p_adjustment_method = p_adjustment_method)

    # Use only the univariate data.
    x <- x$univariate

    # Check that the data are not empty.
    if (is_empty(x)) return(NULL)

    # Check that the data are not evaluated at the model level.
    if (all(sapply(x, function(x) (x@detail_level == "model")))) {
      ..warning_no_comparison_between_models()
      return(NULL)
    }

    # Obtain data element from list.
    if (is.list(x)) {
      if (is_empty(x)) return(NULL)

      if (length(x) > 1) ..error_reached_unreachable_code(
        "plot_univariate_importance: list of data elements contains unmerged elements.")

      # Get x directly.
      x <- x[[1]]
    }

    # Check that the data are not empty.
    if (is_empty(x)) return(NULL)

    # Check show_cluster
    .check_parameter_value_is_valid(
      x = show_cluster, 
      var_name = "show_cluster",
      values = c(FALSE, TRUE))

    if (show_cluster) {
      # Get feature similarity data.
      feature_similarity <- export_feature_similarity(
        object = object,
        feature_cluster_method = feature_cluster_method,
        feature_linkage_method = feature_linkage_method,
        feature_cluster_cut_method = feature_cluster_cut_method,
        feature_similarity_threshold = feature_similarity_threshold,
        export_dendrogram = FALSE,
        export_ordered_data = FALSE,
        export_clustering = TRUE
      )[[1]]
      
    } else {
      feature_similarity <- NULL
    }

    # Update data --------------------------------------------------------------

    # Set default adjust method.
    if (is.waive(p_adjustment_method)) p_adjustment_method <- "fdr"

    # Determine the metric column.
    column_data <- .plot_univariate_check_p_adjustment_method(
      method = p_adjustment_method,
      x = x@data,
      verbose = verbose)
    
    if (is.null(column_data)) return(NULL)

    # Check package requirements for plotting.
    if (!require_package(
      x = ..required_plotting_packages(extended = FALSE),
      purpose = "to plot univariate variable importance",
      message_type = "warning")) {
      return(NULL)
    }

    data.table::setnames(
      x = x@data,
      old = column_data$value_column, 
      new = "value")

    # Update p-values below the machine precision (i.e. p=0.0).
    x@data[value <= 0.0, "value" := 2 * .Machine$double.eps]

    # Convert p-value column to logarithmic scale
    x@data[, "log_value" := -log10(value)]
    
    # Check input arguments ----------------------------------------------------
    
    # ggtheme
    ggtheme <- .check_ggtheme(ggtheme)

    # significance_level_shown
    if (!is.null(significance_level_shown)) {
      sapply(
        significance_level_shown, 
        .check_number_in_valid_range,
        var_name = "significance_level_shown",
        range = c(0, 1),
        closed = c(FALSE, TRUE))
    }

    # x_range
    if (is.null(x_range) && is.null(significance_level_shown)) {
      x_range <- c(0, max(x@data$log_value, na.rm = TRUE))
      
    } else if (is.null(x_range) && !is.null(significance_level_shown)) {
      x_range <- c(0, max(c(
        max(x@data$log_value, na.rm = TRUE),
        max(-log10(significance_level_shown)))))
    }

    # x_breaks
    if (is.null(x_breaks)) {
      .check_input_plot_args(
        x_range = x_range, 
        x_n_breaks = x_n_breaks)

      # Create breaks and update x_range
      x_breaks <- labeling::extended(
        m = x_n_breaks,
        dmin = x_range[1],
        dmax = x_range[2],
        only.loose = TRUE)
      
      x_range <- c(0, tail(x_breaks, n = 1))
    }

    # x_label Set default name for x-axis label
    if (is.waive(x_label)) {
      label_name <- column_data$label

      x_label <- bquote(-log[10] * "(" * .(label_name) * ")")
    }

    # Clusters cannot be generated in case no cluster information is present.
    if (is_empty(feature_similarity)) {
      show_cluster <- FALSE
    }

    # Set default splitting variables if none are provided.
    if (is.null(split_by) && is.null(color_by) && is.null(facet_by)) {
      split_by <- c("fs_method", "learner")
      color_by <- c("data_set")
    }

    # Check splitting variables and generate sanitised output.
    split_var_list <- .check_plot_splitting_variables(
      x = x@data,
      split_by = split_by,
      color_by = color_by,
      facet_by = facet_by,
      available = c("fs_method", "learner", "data_set"))

    # Update splitting variables
    split_by <- split_var_list$split_by
    color_by <- split_var_list$color_by
    facet_by <- split_var_list$facet_by

    # Parse legend label
    legend_label <- .create_plot_legend_title(
      user_label = legend_label, 
      color_by = color_by)

    # Check general input arguments
    .check_input_plot_args(
      x_range = x_range,
      x_breaks = x_breaks,
      x_label = x_label,
      y_label = y_label,
      legend_label = legend_label,
      plot_title = plot_title,
      plot_sub_title = plot_sub_title,
      caption = caption,
      facet_wrap_cols = facet_wrap_cols)

    # Create plots -------------------------------------------------------------

    # Determine if subtitle should be generated.
    autogenerate_plot_subtitle <- is.waive(plot_sub_title)

    # Split data
    if (!is.null(split_by)) {
      x_split <- split(x@data, by = split_by)
    } else {
      x_split <- list(x@data)
    }

    # Store plots to list in case no dir_path is provided
    if (is.null(dir_path)) plot_list <- list()

    # Iterate over splits
    for (x_sub in x_split) {
      if (is_empty(x_sub)) next

      # Join cluster and univariate data.
      if (show_cluster) {
        # Join on common columns. These are feature plus any column in split_by.
        x_temporary <- feature_similarity@data[x_sub, on = .NATURAL]

        # Check that the resulting data is not empty, because this would mean
        # that there is e.g. only one feature.
        if (is_empty(x_temporary)) {
          x_temporary <- data.table::copy(x_sub)
          x_temporary[, ":="(
            "cluster_id" = .I,
            "cluster_size" = 1L)]
        }

        # Replace x_sub
        x_sub <- x_temporary
      }

      if (is.waive(plot_title)) plot_title <- "Univariate variable importance"

      if (autogenerate_plot_subtitle) {
        plot_sub_title <- .create_plot_subtitle(
          split_by = split_by,
          x = x_sub)
      }

      # Generate plot
      p <- .plot_univariate_importance(
        x = x_sub,
        color_by = color_by,
        facet_by = facet_by,
        facet_wrap_cols = facet_wrap_cols,
        ggtheme = ggtheme,
        show_cluster = show_cluster,
        discrete_palette = discrete_palette,
        gradient_palette = gradient_palette,
        x_label = x_label,
        y_label = y_label,
        legend_label = legend_label,
        plot_title = plot_title,
        plot_sub_title = plot_sub_title,
        caption = caption,
        x_range = x_range,
        x_breaks = x_breaks,
        significance_level_shown = significance_level_shown)

      # Check empty output
      if (is.null(p)) next

      # Draw plot
      if (draw) .draw_plot(plot_or_grob = p)

      # Save and export
      if (!is.null(dir_path)) {
        # Obtain decent default values for the plot.
        def_plot_dims <- .determine_univariate_importance_plot_dimensions(
          x = x_sub,
          facet_by = facet_by,
          facet_wrap_cols = facet_wrap_cols)

        # Save to file.
        do.call(
          .save_plot_to_file,
          args = c(
            list(
              "plot_or_grob" = p,
              "object" = object,
              "dir_path" = dir_path,
              "type" = "variable_importance",
              "subtype" = "univariate",
              "x" = x_sub,
              "split_by" = split_by,
              "height" = ifelse(is.waive(height), def_plot_dims[1], height),
              "width" = ifelse(is.waive(width), def_plot_dims[2], width),
              "units" = ifelse(is.waive(units), "cm", units)),
            list(...)))
        
      } else {
        # Store as list and export
        plot_list <- c(plot_list, list(p))
      }
    }

    # Generate output
    return(.get_plot_results(
      dir_path = dir_path,
      plot_list = plot_list,
      export_collection = export_collection,
      object = object))
  }
)



#' Internal plotting function for univariate plots
#'
#' @inheritParams plot_univariate_importance
#'
#' @return ggplot plot object.
#'
#' @seealso
#' * \code{\link{plot_univariate_importance}} for the user interface.
#' @md
#' @keywords internal
.plot_univariate_importance <- function(
    x,
    color_by,
    facet_by,
    facet_wrap_cols,
    ggtheme,
    show_cluster,
    discrete_palette,
    gradient_palette,
    x_label,
    y_label,
    legend_label,
    plot_title,
    plot_sub_title,
    caption,
    x_range,
    x_breaks,
    significance_level_shown) {
  # Suppress NOTES due to non-standard evaluation in data.table
  log_value <- NULL
  
  # Create local copy
  x <- data.table::copy(x)

  # Drop levels and reorder table so that features are sorted by the log-values
  x$feature <- droplevels(x$feature)
  x <- x[order(log_value)]
  x$feature <- factor(x$feature, levels = unique(x$feature))

  # Generate a guide table
  guide_list <- .create_plot_guide_table(
    x = x,
    color_by = color_by,
    discrete_palette = discrete_palette)

  # Extract data
  x <- guide_list$data

  # Check if cluster information should be shown.
  if (show_cluster) {
    x <- .add_plot_cluster_name(
      x = x,
      color_by = color_by,
      facet_by = facet_by)
  }

  # Create basic plot
  p <- ggplot2::ggplot(
    data = x,
    mapping = ggplot2::aes(
      x = !!sym("feature"), 
      y = !!sym("log_value")))
  p <- p + ggtheme

  # Add fill colors
  if (!is.null(color_by)) {
    # Extract guide_table for color
    g_color <- guide_list$guide_color

    p <- p + ggplot2::geom_bar(
      stat = "identity",
      mapping = ggplot2::aes(fill = !!sym("color_breaks")),
      position = "dodge")

    p <- p + ggplot2::scale_fill_manual(
      name = legend_label$guide_color,
      values = g_color$color_values,
      breaks = g_color$color_breaks,
      drop = FALSE)
    
  } else if (!is.waive(gradient_palette)) {
    # Coloring by log of the p-value
    p <- p + ggplot2::geom_bar(
      stat = "identity",
      mapping = ggplot2::aes(fill = !!sym("log_value")),
      show.legend = FALSE)
    p <- p + ggplot2::scale_fill_gradientn(
      colors = .get_palette(
        x = gradient_palette,
        palette_type = "sequential"),
      limits = x_range)
    
  } else {
    # No colouring of the bars.
    p <- p + ggplot2::geom_bar(stat = "identity")
  }

  # Set breaks and limits
  p <- p + ggplot2::scale_y_continuous(breaks = x_breaks)
  p <- p + ggplot2::coord_flip(ylim = x_range)

  # Determine how things are faceted.
  facet_by_list <- .parse_plot_facet_by(
    x = x,
    facet_by = facet_by,
    facet_wrap_cols = facet_wrap_cols)

  if (!is.null(facet_by)) {
    if (is.null(facet_wrap_cols)) {
      # Use a grid
      p <- p + ggplot2::facet_grid(
        rows = facet_by_list$facet_rows,
        cols = facet_by_list$facet_cols,
        labeller = "label_context")
      
    } else {
      p <- p + ggplot2::facet_wrap(
        facets = facet_by_list$facet_by,
        labeller = "label_context")
    }
  }

  # Show clusters
  if (show_cluster) {
    # Obtain default settings.
    text_settings <- .get_plot_geom_text_settings(ggtheme = ggtheme)

    if (is.null(color_by)) {
      p <- p + ggplot2::geom_text(
        ggplot2::aes(
          label = !!sym("cluster_name"),
          y = 0.0,
          angle = 270.0),
        colour = text_settings$colour,
        family = text_settings$family,
        fontface = text_settings$face,
        size = text_settings$geom_text_size,
        vjust = -0.50)
      
    } else {
      p <- p + ggplot2::geom_text(
        ggplot2::aes(
          label = !!sym("cluster_name"),
          y = 0.0,
          group = !!sym("color_breaks"),
          angle = 270.0),
        colour = text_settings$colour,
        family = text_settings$family,
        fontface = text_settings$face,
        size = text_settings$geom_text_size,
        vjust = -0.50,
        position = ggplot2::position_dodge(width = 0.9))
    }
  }
  
  # Add vertical lines for significance levels.
  if (!is.null(significance_level_shown)) {
    for (curr_signif_level in significance_level_shown) {
      p <- p + ggplot2::geom_hline(
        yintercept = -log10(curr_signif_level),
        linetype = "dotted")
    }
  }

  # Update labels. Note that the inversion of x_label and y_label is correct, as
  # the coordinates were flipped
  p <- p + ggplot2::labs(
    x = y_label,
    y = x_label,
    title = plot_title,
    subtitle = plot_sub_title,
    caption = caption)

  return(p)
}



.determine_univariate_importance_plot_dimensions <- function(
    x,
    facet_by, 
    facet_wrap_cols) {
  
  # Get plot layout dimensions
  plot_dims <- .get_plot_layout_dims(
    x = x,
    facet_by = facet_by,
    facet_wrap_cols = facet_wrap_cols)

  # Determine the number of features within each facet.
  n_features <- data.table::uniqueN(x = x$feature)
  longest_name <- max(sapply(levels(x$feature), nchar))

  # Assume each feature takes up about 14 points (~5mm) with 2 point (0.7mm)
  # spacing. Then add some room for other plot elements.
  default_height <- n_features * 0.5 + (n_features - 1) * 0.07 + 1.0

  # Set a default height. Assume that the typical width of a character is about
  # 5 points (1.8mm).
  default_width <- 6 + longest_name * 0.18

  # Set overall plot height, but limit to small-margin A4 (27.7 cm)
  height <- min(c(2 + plot_dims[1] * default_height, 27.7))

  # Set overall plot width, but limit to small-margin A4 (19 cm)
  width <- min(c(2 + plot_dims[2] * default_width, 19))

  return(c(height, width))
}



.plot_univariate_check_p_adjustment_method <- function(
    x, 
    method, 
    verbose = TRUE) {
  .check_parameter_value_is_valid(
    x = method,
    var_name = "p_adjustment_method",
    values = c(stats::p.adjust.methods, "p_value", "q_value"))

  value_column <- switch(
    method,
    "holm" = "adjusted_p_value",
    "hochberg" = "adjusted_p_value",
    "hommel" = "adjusted_p_value",
    "bonferroni" = "adjusted_p_value",
    "BH" = "adjusted_p_value",
    "BY" = "adjusted_p_value",
    "fdr" = "adjusted_p_value",
    "none" = "p_value",
    "p_value" = "p_value",
    "q_value" = "q_value")

  label_name <- switch(
    method,
    "holm" = "Holm corrected p-value",
    "hochberg" = "Hochberg corrected p-value",
    "hommel" = "Hommel corrected p-value",
    "bonferroni" = "Bonferroni corrected p-value",
    "BH" = "Benjamini-Hochberg corrected p-value",
    "BY" = "Benjamini-Yekutieli corrected p-value",
    "fdr" = "FDR-corrected p-value",
    "none" = "p-value",
    "p_value" = "p-value",
    "q_value" = "q-value")

  # Check if the column is present.
  if (is.null(x[[value_column]])) {
    stop(paste0(
      "Univariate importance can not be plotted as the values for ",
      "the requested p adjustment method (", value_column, 
      ") were not found in the data."))
  }

  # Check if any values are valid.
  if (all(!is.finite(x[[value_column]]))) {
    if (verbose) {
      warning("Univariate importance can not be plotted as all values are NA.")
    }

    return(NULL)
  }

  return(list(
    "value_column" = value_column,
    "label" = label_name))
}

Try the familiar package in your browser

Any scripts or data that you put into this service are public.

familiar documentation built on Sept. 30, 2024, 9:18 a.m.