Nothing
familiar:::test_all_vimp_methods_available(
familiar:::.get_available_rfsrc_vimp_methods(show_general = TRUE))
familiar:::test_all_vimp_methods_available(
familiar:::.get_available_rfsrc_default_vimp_methods(show_general = TRUE))
# Don't perform any further tests on CRAN due to time of running the complete
# test.
testthat::skip_on_cran()
testthat::skip_on_ci()
familiar:::test_all_vimp_methods(
familiar:::.get_available_rfsrc_vimp_methods(show_general = FALSE),
debug = FALSE,
hyperparameter_list = list(
"count" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
),
"continuous" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
),
"binomial" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
),
"multinomial" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
),
"survival" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
)
)
)
familiar:::test_all_vimp_methods(
familiar:::.get_available_rfsrc_default_vimp_methods())
familiar:::test_all_vimp_methods_parallel(
familiar:::.get_available_rfsrc_vimp_methods(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
),
"continuous" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
),
"binomial" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
),
"multinomial" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
),
"survival" = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 2
)
)
)
# Count outcome ----------------------------------------------------------------
data <- familiar:::test_create_good_data("count")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_minimum_depth",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "count",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest minimum depth method correctly ranks count data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c(
"per_capita_crime", "lower_status_percentage",
"residence_before_1940_proportion", "avg_rooms")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_permutation",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "count",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest permutation method correctly ranks count data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c(
"per_capita_crime", "lower_status_percentage",
"residence_before_1940_proportion", "avg_rooms", "industry")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_holdout",
vimp_method_parameter_list = list(
"n_tree" = 12,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "count",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest hold-out method correctly ranks count data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c(
"per_capita_crime", "lower_status_percentage",
"residence_before_1940_proportion", "avg_rooms", "property_tax_rate")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_variable_hunting",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 3),
outcome_type = "count",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest variable hunting method correctly ranks count data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% familiar:::get_feature_columns(data)),
TRUE)
}
)
# Continuous outcome -----------------------------------------------------------
data <- familiar:::test_create_good_data("continuous")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_minimum_depth",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "continuous",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest minimum depth method correctly ranks continuous data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
any(vimp_table[rank <= 2]$name %in% c("enrltot", "avginc", "calwpct")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_permutation",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "continuous",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest permutation method correctly ranks continuous data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
any(vimp_table[rank <= 2]$name %in% c("enrltot", "avginc", "calwpct")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_holdout",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "continuous",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest hold-out method correctly ranks continuous data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
any(vimp_table[rank <= 2]$name %in% c("enrltot", "avginc", "calwpct")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_variable_hunting",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 3),
outcome_type = "continuous",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest variable hunting method correctly ranks continuous data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% familiar:::get_feature_columns(data)),
TRUE)
}
)
# Binomial outcome -------------------------------------------------------------
data <- familiar:::test_create_good_data("binomial")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_minimum_depth",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest minimum depth method correctly ranks binomial data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c(
"cell_shape_uniformity", "clump_thickness", "epithelial_cell_size", "bare_nuclei")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_permutation",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple"
)
testthat::test_that(
paste0(
"The RFSRC random forest permutation method correctly ranks binomial data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c(
"cell_shape_uniformity", "clump_thickness", "epithelial_cell_size", "bare_nuclei")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_holdout",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest hold-out method correctly ranks binomial data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% familiar:::get_feature_columns(data)),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_variable_hunting",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 3),
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest variable hunting method correctly ranks binomial data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% familiar:::get_feature_columns(data)),
TRUE)
}
)
# Multinomial outcome ----------------------------------------------------------
data <- familiar:::test_create_good_data("multinomial")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_minimum_depth",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest minimum depth method correctly ranks multinomial outcome data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c("Petal_Length", "Petal_Width")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_permutation",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest permutation method correctly ranks multinomial outcome data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c("Petal_Length", "Petal_Width")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_holdout",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest hold-out method correctly ranks multinomial outcome data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% familiar:::get_feature_columns(data)),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_variable_hunting",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 3),
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest variable hunting method correctly ranks multinomial outcome data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% familiar:::get_feature_columns(data)),
TRUE)
}
)
# Survival outcome -------------------------------------------------------------
data <- familiar:::test_create_good_data("survival")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_minimum_depth",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "survival",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest minimum depth method correctly ranks survival outcome data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c("nodes", "rx", "adhere")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_permutation",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "survival",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest permutation method correctly ranks survival outcome data."), {
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c("nodes", "rx")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_holdout",
vimp_method_parameter_list = list(
"n_tree" = 8,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5),
outcome_type = "survival",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest hold-out method correctly ranks survival outcome data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% c("nodes", "rx")),
TRUE)
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_rfsrc_variable_hunting",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 0.50,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"fs_vh_fold" = 3,
"fs_vh_n_rep" = 3),
outcome_type = "survival",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The RFSRC random forest variable hunting method correctly ranks survival outcome data."),
{
vimp_table <- suppressWarnings(
familiar:::get_vimp_table(familiar:::.vimp(vimp_object, data)))
testthat::expect_equal(
all(vimp_table[rank <= 2]$name %in% familiar:::get_feature_columns(data)),
TRUE)
}
)
testthat::skip("Skip hyperparameter optimisation, unless manual.")
familiar:::test_hyperparameter_optimisation(
vimp_methods = familiar:::.get_available_rfsrc_vimp_methods(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.