Nothing
# First test if all selectable learners are also available
familiar:::test_all_learners_available(
learners = familiar:::.get_available_glmnet_ridge_learners(show_general = TRUE))
familiar:::test_all_learners_available(
learners = familiar:::.get_available_glmnet_lasso_learners(show_general = TRUE))
familiar:::test_all_learners_available(
learners = familiar:::.get_available_glmnet_elastic_net_learners(show_general = TRUE))
# Don't perform any further tests on CRAN due to time of running the complete test.
testthat::skip_on_cran()
testthat::skip_on_ci()
familiar:::test_all_learners_train_predict_vimp(
learners = familiar:::.get_available_glmnet_ridge_learners(show_general = FALSE))
familiar:::test_all_learners_train_predict_vimp(
learners = familiar:::.get_available_glmnet_lasso_learners(show_general = FALSE))
familiar:::test_all_learners_train_predict_vimp(
learners = familiar:::.get_available_glmnet_elastic_net_learners(show_general = FALSE),
hyperparameter_list = list(
"count" = list("alpha" = 0.50),
"continuous" = list("alpha" = 0.50),
"binomial" = list("alpha" = 0.50),
"multinomial" = list("alpha" = 0.50),
"survival" = list("alpha" = 0.50)))
familiar:::test_all_learners_parallel_train_predict_vimp(
learners = familiar:::.get_available_glmnet_ridge_learners(show_general = FALSE))
familiar:::test_all_learners_parallel_train_predict_vimp(
learners = familiar:::.get_available_glmnet_lasso_learners(show_general = FALSE))
familiar:::test_all_learners_parallel_train_predict_vimp(
learners = familiar:::.get_available_glmnet_elastic_net_learners(show_general = FALSE),
hyperparameter_list = list(
"count" = list("alpha" = 0.50),
"continuous" = list("alpha" = 0.50),
"binomial" = list("alpha" = 0.50),
"multinomial" = list("alpha" = 0.50),
"survival" = list("alpha" = 0.50)))
# Count outcome tests-----------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("count")
wide_data <- familiar:::test_create_wide_data("count")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(good_data)),
learner = "lasso")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(wide_data)),
learner = "lasso")
testthat::test_that("Regularised regression model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Regularised regression model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has entries up to the number of features.
testthat::expect_equal(nrow(vimp_table) <= familiar:::get_n_features(good_data), TRUE)
# Expect that the names are the same as that of the features.
testthat::expect_equal(all(vimp_table$name %in% familiar:::get_feature_columns(good_data)), TRUE)
# Expect specific features to be highly ranked.
testthat::expect_true(
any(vimp_table[rank <= 2]$name %in% c(
"avg_rooms", "per_capita_crime", "lower_status_percentage", "industry", "large_residence_proportion")))
})
testthat::test_that("Regularised regression model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Continuous outcome tests------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("continuous")
wide_data <- familiar:::test_create_wide_data("continuous")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(good_data)),
learner = "lasso_gaussian")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(wide_data)),
learner = "lasso_gaussian")
testthat::test_that("Regularised regression model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# That no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Regularised regression model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has two rows.
testthat::expect_equal(nrow(vimp_table) <= 10, TRUE)
# Expect that the names are the same as that of the features.
testthat::expect_true(all(vimp_table$name %in% familiar:::get_feature_columns(good_data)))
# Expect that avginc has rank 1 and calwpct has rank 2.
testthat::expect_true(vimp_table[rank == 1, ]$name %in% c(
"avginc", "calwpct", "teachers", "enrltot"))
testthat::expect_true(vimp_table[rank == 2, ]$name %in% c(
"avginc", "calwpct", "teachers", "enrltot"))
})
testthat::test_that("Regularised regression model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# That no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Binomial tests----------------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("binomial")
wide_data <- familiar:::test_create_wide_data("binomial")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(good_data)),
learner = "lasso_binomial")
# Train the model using wide data.
wide_model <- suppressWarnings(familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(wide_data)),
learner = "lasso_binomial"))
testthat::test_that("Regularised regression model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# That no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Regularised regression model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has two rows.
testthat::expect_lte(nrow(vimp_table), 8)
# Expect that the names are the same as that of the features.
testthat::expect_true(any(familiar:::get_feature_columns(good_data) %in% vimp_table$name))
testthat::expect_true(all(vimp_table[rank <= 2, ]$name %in% c("cell_shape_uniformity", "mitoses", "bare_nuclei")))
})
testthat::test_that("Regularised regression model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is present.
testthat::expect_equal(familiar:::is_empty(familiar:::get_vimp_table(wide_model)), FALSE)
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# That no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Multinomial tests-------------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("multinomial")
wide_data <- familiar:::test_create_wide_data("multinomial")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(good_data)),
learner = "lasso_multinomial")
# Train the model using wide data.
wide_model <- suppressWarnings(familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(wide_data)),
learner = "lasso_multinomial"))
testthat::test_that("Regularised regression model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# That no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Regularised regression model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has two rows.
testthat::expect_equal(nrow(vimp_table), 4)
# Expect that the names are the same as that of the features.
testthat::expect_true(all(familiar:::get_feature_columns(good_data) %in% vimp_table$name))
# Expect that Petal length has rank 1 and petal width has rank 2.
testthat::expect_true(all(vimp_table[rank <= 2, ]$name %in% c("Petal_Length", "Petal_Width")))
})
# This model may occasionally be able to train.
testthat::test_that("Regularised regression model can not train on wide data", {
if (familiar:::model_is_trained(wide_model)) {
# Variable importance table is not empty.
testthat::expect_false(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions can be made.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# That no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Check that the expected error appears.
testthat::expect_equal(wide_model@messages$error, NULL)
} else {
# Variable importance table is empty.
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions cannot be made.
testthat::expect_false(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# That no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Check that the expected error appears.
testthat::expect_equal(length(wide_model@messages$error), 1L)
testthat::expect_true(grepl(
x = wide_model@messages$error,
pattern = "lognet: one multinomial or binomial class has 1 or 0 observations; not allowed",
fixed = TRUE))
}
})
# Survival tests----------------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("survival")
wide_data <- familiar:::test_create_wide_data("survival")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(good_data)),
time_max = 1832,
learner = "lasso_cox")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(wide_data)),
time_max = 1832,
learner = "lasso_cox")
testthat::test_that("Regularised regression model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Calibration info is present
testthat::expect_equal(familiar:::has_calibration_info(good_model), TRUE)
# Test that the model predicts hazard ratios.
testthat::expect_equal(
familiar:::get_prediction_type(good_model),
"hazard_ratio")
# Test that the model predicts hazard ratios
testthat::expect_equal(
familiar:::get_prediction_type(good_model, type = "survival_probability"),
"survival_probability")
# That no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Regularised regression model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has two rows.
testthat::expect_equal(nrow(vimp_table), 2)
# Expect that the names are the same as that of the features.
testthat::expect_true(any(familiar:::get_feature_columns(good_data) %in% vimp_table$name))
# Expect that rx has rank 1 and nodes has rank 2.
testthat::expect_equal(vimp_table[rank == 1, ]$name, "rx")
testthat::expect_equal(vimp_table[rank == 2, ]$name, "nodes")
})
testthat::test_that("Regularised regression model can train on wide data", {
# Model was trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Valid predictions are present.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Valid survival probability predictions can be made.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data, type = "survival_probability", time = 1000),
outcome_type = wide_data@outcome_type))
# That no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
testthat::skip("Skip hyperparameter optimisation, unless manual.")
familiar:::test_hyperparameter_optimisation(
learners = familiar:::.get_available_glmnet_ridge_learners(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
familiar:::test_hyperparameter_optimisation(
learners = familiar:::.get_available_glmnet_lasso_learners(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
familiar:::test_hyperparameter_optimisation(
learners = familiar:::.get_available_glmnet_elastic_net_learners(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.