Nothing
# First test if all selectable learners are also available
familiar:::test_all_learners_available(
learners = familiar:::.get_available_xgboost_dart_learners(show_general = TRUE))
# Don't perform any further tests on CRAN due to time of running the complete
# test.
testthat::skip_on_cran()
testthat::skip_on_ci()
familiar:::test_all_learners_train_predict_vimp(
learners = familiar:::.get_available_xgboost_dart_learners(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
),
"continuous" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
),
"binomial" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
),
"multinomial" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
),
"survival" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
)
)
)
familiar:::test_all_learners_parallel_train_predict_vimp(
learners = familiar:::.get_available_xgboost_dart_learners(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
),
"continuous" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
),
"binomial" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
),
"multinomial" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
),
"survival" = list(
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0
)
)
)
# Count outcome tests-----------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("count")
wide_data <- familiar:::test_create_wide_data("count")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
learner = "xgboost_dart_gaussian")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(wide_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
learner = "xgboost_dart_gaussian")
testthat::test_that("Extreme gradient boosting dart tree model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Extreme gradient boosting dart tree model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has less than 10 rows.
testthat::expect_equal(nrow(vimp_table) <= get_n_features(good_data), TRUE)
# Expect that the names are the same as that of the features.
testthat::expect_true(all(vimp_table$name %in% familiar:::get_feature_columns(good_data)))
# Expect that avg_rooms has rank 1 and lower_status_percentage has rank 2.
testthat::expect_true(vimp_table[rank == 1, ]$name %in% c(
"avg_rooms", "lower_status_percentage", "per_capita_crime", "residence_before_1940_proportion"))
testthat::expect_true(vimp_table[rank == 2, ]$name %in% c(
"avg_rooms", "lower_status_percentage", "per_capita_crime", "residence_before_1940_proportion"))
})
testthat::test_that("Extreme gradient boosting dart tree model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is absent.
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Continuous outcome tests------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("continuous")
wide_data <- familiar:::test_create_wide_data("continuous")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
learner = "xgboost_dart_gaussian")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(wide_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
learner = "xgboost_dart_gaussian")
testthat::test_that("Extreme gradient boosting dart tree model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Extreme gradient boosting dart tree model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has two rows.
testthat::expect_equal(nrow(vimp_table), 10)
# Expect that the names are the same as that of the features.
testthat::expect_true(all(vimp_table$name %in% familiar:::get_feature_columns(good_data)))
# Expect that avginc has rank 1 and calwpct has rank 2.
testthat::expect_equal(vimp_table[rank == 1, ]$name, "avginc")
testthat::expect_equal(vimp_table[rank == 2, ]$name, "calwpct")
})
testthat::test_that("Extreme gradient boosting dart tree model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is absent.
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Binomial tests----------------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("binomial")
wide_data <- familiar:::test_create_wide_data("binomial")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
learner = "xgboost_dart_logistic")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(wide_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
learner = "xgboost_dart_logistic")
testthat::test_that("Extreme gradient boosting dart tree model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Extreme gradient boosting dart tree model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has two rows.
testthat::expect_equal(nrow(vimp_table), 6)
# Expect that the names are the same as that of the features.
testthat::expect_true(all(vimp_table$name %in% familiar:::get_feature_columns(good_data)))
# Expect that cell_shape_uniformity has rank 1 and epithelial_cell_size has
# rank 2.
testthat::expect_equal(vimp_table[rank == 1, ]$name, "cell_shape_uniformity")
testthat::expect_equal(vimp_table[rank == 2, ]$name, "epithelial_cell_size")
})
testthat::test_that("Extreme gradient boosting dart tree model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is absent.
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Multinomial tests-------------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("multinomial")
wide_data <- familiar:::test_create_wide_data("multinomial")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
learner = "xgboost_dart_logistic")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(wide_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
learner = "xgboost_dart_logistic")
testthat::test_that("Extreme gradient boosting dart tree model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Extreme gradient boosting dart tree model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has two rows.
testthat::expect_equal(nrow(vimp_table), 4)
# Expect that the names are the same as that of the features.
testthat::expect_true(all(familiar:::get_feature_columns(good_data) %in% vimp_table$name))
# Expect that Petal_Length has rank 1 and Petal_Width has rank 2.
testthat::expect_equal(vimp_table[rank == 1, ]$name, "Petal_Length")
testthat::expect_equal(vimp_table[rank == 2, ]$name, "Petal_Width")
})
testthat::test_that("Extreme gradient boosting dart tree model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is absent.
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Survival tests----------------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("survival")
wide_data <- familiar:::test_create_wide_data("survival")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
time_max = 1832,
learner = "xgboost_dart_cox")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(wide_data),
"n_boost" = 2,
"learning_rate" = -1,
"lambda" = 0.0,
"alpha" = -6.0,
"min_child_weight" = 1.04,
"tree_depth" = 3,
"sample_size" = 1.0,
"gamma" = -6.0,
"sample_type" = "uniform",
"rate_drop" = 0.0),
time_max = 1832,
learner = "xgboost_dart_cox")
testthat::test_that("Extreme gradient boosting dart tree model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Test the prediction type
testthat::expect_equal(
familiar:::get_prediction_type(good_model),
"hazard_ratio")
# Test that the model predicts hazard ratios
testthat::expect_equal(
familiar:::get_prediction_type(good_model, type = "survival_probability"),
"survival_probability")
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("Extreme gradient boosting dart tree model has variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table has three or two rows.
testthat::expect_equal(nrow(vimp_table) %in% c(2, 3), TRUE)
# Expect that the names are the same as that of the features.
testthat::expect_true(any(familiar:::get_feature_columns(good_data) %in% vimp_table$name))
# Expect that nodes has rank 1 and rx has rank 2.
testthat::expect_equal(vimp_table[rank == 1, ]$name, "nodes")
testthat::expect_equal(vimp_table[rank == 2, ]$name, "rx")
})
testthat::test_that("Extreme gradient boosting dart tree model can train and predict on wide data", {
# Model was trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is absent.
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions are present.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Valid survival probability predictions can be made.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data, type = "survival_probability", time = 1000),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
testthat::skip("Skip hyperparameter optimisation, unless manual.")
familiar:::test_hyperparameter_optimisation(
learners = familiar:::.get_available_xgboost_dart_learners(show_general = TRUE),
debug = FALSE,
parallel = FALSE
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.