Nothing
familiar:::test_all_vimp_methods_available(
familiar:::.get_available_ranger_vimp_methods(show_general = TRUE))
familiar:::test_all_vimp_methods_available(
familiar:::.get_available_ranger_default_vimp_methods(show_general = TRUE))
# Don't perform any further tests on CRAN due to time of running the complete test.
testthat::skip_on_cran()
testthat::skip_on_ci()
familiar:::test_all_vimp_methods(
familiar:::.get_available_ranger_vimp_methods(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
),
"continuous" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
),
"binomial" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
),
"multinomial" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
),
"survival" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
)
)
)
familiar:::test_all_vimp_methods(
familiar:::.get_available_ranger_default_vimp_methods(show_general = FALSE))
# Parallel test.
familiar:::test_all_vimp_methods_parallel(
familiar:::.get_available_ranger_vimp_methods(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
),
"continuous" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
),
"binomial" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
),
"multinomial" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
),
"survival" = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1
)
)
)
# Count outcome ----------------------------------------------------------------
data <- familiar:::test_create_good_data("count")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_impurity",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "count",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest impurity method correctly ranks count data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"per_capita_crime", "lower_status_percentage",
"residence_before_1940_proportion", "avg_rooms", "industry")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "count",
cluster_method = "none",
imputation_method = "simple"
)
testthat::test_that(
paste0("The ranger random forest permutation method correctly ranks count data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c(
"per_capita_crime", "lower_status_percentage",
"residence_before_1940_proportion", "avg_rooms")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_holdout_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "count",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest hold-out permutation method correctly ranks count data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c(
"per_capita_crime", "lower_status_percentage",
"residence_before_1940_proportion", "avg_rooms")))
}
)
# Continuous outcome -----------------------------------------------------------
data <- familiar:::test_create_good_data("continuous")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_impurity",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "continuous",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest impurity method correctly ranks continuous data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c(
"enrltot", "avginc", "calwpct")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "continuous",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest permutation method correctly ranks continuous data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c(
"enrltot", "avginc", "calwpct")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_holdout_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "continuous",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest hold-out permutation method correctly ranks continuous data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c(
"enrltot", "avginc", "calwpct")))
}
)
# Binomial outcome -------------------------------------------------------------
data <- familiar:::test_create_good_data("binomial")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_impurity",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest impurity method correctly ranks binomial data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c(
"cell_shape_uniformity", "clump_thickness",
"epithelial_cell_size", "bare_nuclei")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest permutation method correctly ranks binomial data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c(
"cell_shape_uniformity", "clump_thickness",
"epithelial_cell_size", "bare_nuclei")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_holdout_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "binomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest hold-out permutation method correctly ranks binomial data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(any(vimp_table[rank <= 2]$name %in% c(
"cell_shape_uniformity", "clump_thickness",
"epithelial_cell_size", "bare_nuclei")))
}
)
# Multinomial outcome ----------------------------------------------------------
data <- familiar:::test_create_good_data("multinomial")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_impurity",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest impurity method correctly ranks multinomial outcome data."), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"Petal_Length", "Petal_Width")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest permutation method correctly ranks multinomial outcome data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"Petal_Length", "Petal_Width")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_holdout_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "multinomial",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The ranger random forest hold-out permutation method ",
"correctly ranks multinomial outcome data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c(
"Petal_Length", "Petal_Width")))
}
)
# Survival outcome -------------------------------------------------------------
data <- familiar:::test_create_good_data("survival")
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_impurity",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "survival",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest impurity method correctly ranks survival outcome data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c("nodes", "rx", "adhere")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "survival",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0("The ranger random forest permutation method correctly ranks survival outcome data."),
{
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c("nodes", "rx", "adhere")))
}
)
# Process dataset.
vimp_object <- familiar:::prepare_vimp_object(
data = data,
vimp_method = "random_forest_ranger_holdout_permutation",
vimp_method_parameter_list = list(
"n_tree" = 4,
"sample_size" = 1.00,
"m_try" = 0.3,
"node_size" = 5,
"tree_depth" = 5,
"alpha" = 0.1),
outcome_type = "survival",
cluster_method = "none",
imputation_method = "simple")
testthat::test_that(
paste0(
"The ranger random forest hold-out permutation method correctly ranks ",
"survival outcome data."
), {
vimp_table <- suppressWarnings(familiar:::get_vimp_table(
familiar:::.vimp(vimp_object, data)))
testthat::expect_true(all(vimp_table[rank <= 2]$name %in% c("nodes", "rx", "adhere")))
}
)
testthat::skip("Skip hyperparameter optimisation, unless manual.")
familiar:::test_hyperparameter_optimisation(
vimp_methods = familiar:::.get_available_ranger_vimp_methods(show_general = TRUE),
debug = FALSE,
parallel = FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.