R/gammaCK2par.R

Defines functions gammaCK2par

Documented in gammaCK2par

#' gammaCK2par
#'
#' Field comparisons for string variables. Two possible agreement patterns are considered:
#' 0 total disagreement, 2 agreement.
#' The distance between strings is calculated using a Jaro-Winkler distance.
#'
#' @usage gammaCK2par(matAp, matBp, n.cores, cut.a, method, w)
#'
#' @param matAp vector storing the comparison field in data set 1
#' @param matBp vector storing the comparison field in data set 2
#' @param n.cores Number of cores to parallelize over. Default is NULL.
#' @param cut.a Lower bound for full match, ranging between 0 and 1. Default is 0.92
#' @param method String distance method, options are: "jw" Jaro-Winkler (Default), "dl" Damerau-Levenshtein, "jaro" Jaro, and "lv" Edit
#' @param w Parameter that describes the importance of the first characters of a string (only needed if method = "jw"). Default is .10
#'
#' @return \code{gammaCK2par} returns a list with the indices corresponding to each
#' matching pattern, which can be fed directly into \code{tableCounts} and \code{matchesLink}.
#'
#' @author Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai
#'
#' @examples
#' \dontrun{
#' g1 <- gammaCK2par(dfA$firstname, dfB$lastname)
#' }
#' @export

## ------------------------
## gammaCK2par: Now it takes values 0, 2
## This function applies gamma.k
## in parallel
## ------------------------

gammaCK2par <- function(matAp, matBp, n.cores = NULL, cut.a = 0.92, method = "jw", w = .10) {

    if(any(class(matAp) %in% c("tbl_df", "data.table"))){
        matAp <- as.data.frame(matAp)[,1]
    }
    if(any(class(matBp) %in% c("tbl_df", "data.table"))){
        matBp <- as.data.frame(matBp)[,1]
    }
    
    matAp[matAp == ""] <- NA
    matBp[matBp == ""] <- NA

    if(sum(is.na(matAp)) == length(matAp) | length(unique(matAp)) == 1){
        cat("WARNING: You have no variation in this variable, or all observations are missing in dataset A.\n")
    }
    if(sum(is.na(matBp)) == length(matBp) | length(unique(matBp)) == 1){
        cat("WARNING: You have no variation in this variable, or all observations are missing in dataset B.\n")
    }

    if(!(method %in% c("jw", "jaro", "lv", "dl"))){
        stop("Invalid string distance method. Method should be one of 'jw', 'dl', 'jaro', or 'lv'.")
    }

    if(method == "jw" & !is.null(w)){
        if(w < 0 | w > 0.25){
            stop("Invalid value provided for w. Remember, w in [0, 0.25].")
        }
    }
    
    if(is.null(n.cores)) {
        n.cores <- detectCores() - 1
    }

    matrix.1 <- as.matrix(as.character(matAp))
    matrix.2 <- as.matrix(as.character(matBp))

    matrix.1[is.na(matrix.1)] <- "1234MF"
    matrix.2[is.na(matrix.2)] <- "9876ES"

    u.values.1 <- unique(matrix.1)
    u.values.2 <- unique(matrix.2)

    n.slices1 <- max(round(length(u.values.1)/(10000), 0), 1) 
    n.slices2 <- max(round(length(u.values.2)/(10000), 0), 1) 

    limit.1 <- round(quantile((0:nrow(u.values.2)), p = seq(0, 1, 1/n.slices2)), 0)
    limit.2 <- round(quantile((0:nrow(u.values.1)), p = seq(0, 1, 1/n.slices1)), 0)

    temp.1 <- temp.2 <- list()

    n.cores <- min(n.cores, n.slices1 * n.slices2)
    
    for(i in 1:n.slices2) {
        temp.1[[i]] <- list(u.values.2[(limit.1[i]+1):limit.1[i+1]], limit.1[i])
    }

    for(i in 1:n.slices1) {
        temp.2[[i]] <- list(u.values.1[(limit.2[i]+1):limit.2[i+1]], limit.2[i])
    }

    stringvec <- function(m, y, cut, strdist = method, p1 = w) {
        x <- as.matrix(m[[1]])
        e <- as.matrix(y[[1]])        
        
        if(strdist == "jw") {
            t <- 1 - stringdistmatrix(e, x, method = "jw", p = p1, nthread = 1)
            t[ t < cut ] <- 0
            t <- Matrix(t, sparse = T)
        }

        if(strdist == "jaro") {
            t <- 1 - stringdistmatrix(e, x, method = "jw", nthread = 1)
            t[ t < cut ] <- 0
            t <- Matrix(t, sparse = T)
        }

        if(strdist == "lv") {
            t <- stringdistmatrix(e, x, method = "lv", nthread = 1)
            t.1 <- nchar(as.matrix(e))
            t.2 <- nchar(as.matrix(x))
            o <- t(apply(t.1, 1, function(w){ ifelse(w >= t.2, w, t.2)}))
            t <- 1 - t * (1/o)
            t[ t < cut ] <- 0
            t <- Matrix(t, sparse = T)
        }
        
        if(strdist == "dl") {
          t <- stringdistmatrix(e, x, method = "dl", nthread = 1)
          t.1 <- nchar(as.matrix(e))
          t.2 <- nchar(as.matrix(x))
          o <- t(apply(t.1, 1, function(w){ ifelse(w >= t.2, w, t.2)}))
          t <- 1 - t * (1/o)
          t[ t < cut ] <- 0
          t <- Matrix(t, sparse = T)
        }
        
        if(is(t, "ddiMatrix")) {
          t <- t * 2
        } else {
          t@x[t@x >= cut] <- 2
        }
        gc()
        
        slice.1 <- m[[2]]
        slice.2 <- y[[2]]
        indexes.2 <- which(t == 2, arr.ind = T)
        indexes.2[, 1] <- indexes.2[, 1] + slice.2
        indexes.2[, 2] <- indexes.2[, 2] + slice.1
        list(indexes.2)
    }

    do <- expand.grid(1:n.slices2, 1:n.slices1)

    if (n.cores == 1) '%oper%' <- foreach::'%do%'
    else { 
        '%oper%' <- foreach::'%dopar%'
        cl <- makeCluster(n.cores)
        registerDoParallel(cl)
        on.exit(stopCluster(cl))
    }

    temp.f <- foreach(i = 1:nrow(do), .packages = c("stringdist", "Matrix")) %oper% {
        r1 <- do[i, 1]
        r2 <- do[i, 2]
        stringvec(temp.1[[r1]], temp.2[[r2]], cut.a)
    }

    gc()

    reshape2 <- function(s) { s[[1]] }
    temp.2 <- lapply(temp.f, reshape2)

    indexes.2 <- do.call('rbind', temp.2)

    ht1 <- new.env(hash=TRUE)
    ht2 <- new.env(hash=TRUE)

    n.values.2 <- as.matrix(cbind(u.values.1[indexes.2[, 1]], u.values.2[indexes.2[, 2]]))
    
    if(sum(n.values.2 == "1234MF") > 0) {
      t1 <- which(n.values.2 == "1234MF", arr.ind = T)[1]
      n.values.2 <- n.values.2[-t1, ]; rm(t1)
    }
    
    if(sum(n.values.2 == "9876ES") > 0) {
      t1 <- which(n.values.2 == "9876ES", arr.ind = T)[1]
      n.values.2 <- n.values.2[-t1, ]; rm(t1)
    }
    
    matches.2 <- lapply(seq_len(nrow(n.values.2)), function(i) n.values.2[i, ])

    if(Sys.info()[['sysname']] == 'Windows') {
        if (n.cores == 1) '%oper%' <- foreach::'%do%'
        else { 
            '%oper%' <- foreach::'%dopar%'
            cl <- makeCluster(n.cores)
            registerDoParallel(cl)
            on.exit(stopCluster(cl))
        }
        if(length(matches.2) > 0) {
            final.list2 <- foreach(i = 1:length(matches.2)) %oper% {
            ht1 <- which(matrix.1 == matches.2[[i]][[1]]); ht2 <- which(matrix.2 == matches.2[[i]][[2]])
            list(ht1, ht2)
      	  }
        }    
    } else {
        no_cores <- n.cores
            final.list2 <- mclapply(matches.2, function(s){
            ht1 <- which(matrix.1 == s[1]); ht2 <- which(matrix.2 == s[2]);
            list(ht1, ht2) }, mc.cores = getOption("mc.cores", no_cores))
    }

    if(length(matches.2) == 0){ 
      final.list2 <- list()
      warning("There are no identical (or nearly identical) matches. We suggest changing the value of cut.a") 
    }
    
    na.list <- list()
    na.list[[1]] <- which(matrix.1 == "1234MF")
    na.list[[2]] <- which(matrix.2 == "9876ES")

    out <- list()
    out[["matches2"]] <- final.list2
    out[["nas"]] <- na.list
    class(out) <- c("fastLink", "gammaCK2par")
    
    return(out)
}


## ------------------------
## End of gammaCK2par
## ------------------------

Try the fastLink package in your browser

Any scripts or data that you put into this service are public.

fastLink documentation built on Nov. 17, 2023, 9:06 a.m.