Nothing
#' gammaNUMCK2par
#'
#' Field comparisons for numeric variables. Two possible agreement patterns are considered:
#' 0 total disagreement, 2 agreement.
#' The distance between numbers is calculated using their absolute distance.
#'
#' @usage gammaNUMCK2par(matAp, matBp, n.cores, cut.a)
#'
#' @param matAp vector storing the comparison field in data set 1
#' @param matBp vector storing the comparison field in data set 2
#' @param n.cores Number of cores to parallelize over. Default is NULL.
#' @param cut.a Lower bound for full match. Default is 1
#'
#' @return \code{gammaNUMCK2par} returns a list with the indices corresponding to each
#' matching pattern, which can be fed directly into \code{tableCounts} and \code{matchesLink}.
#'
#' @author Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai
#'
#' @examples
#' \dontrun{
#' g1 <- gammaNUMCK2par(dfA$birthyear, dfB$birthyear)
#' }
#' @export
## ------------------------
## gammaNUMCK2par: Now it takes values 0, 2
## This function applies gamma.k
## in parallel
## ------------------------
gammaNUMCK2par <- function(matAp, matBp, n.cores = NULL, cut.a = 1) {
if(any(class(matAp) %in% c("tbl_df", "data.table"))){
matAp <- as.data.frame(matAp)[,1]
}
if(any(class(matBp) %in% c("tbl_df", "data.table"))){
matBp <- as.data.frame(matBp)[,1]
}
matAp[matAp == ""] <- NA
matBp[matBp == ""] <- NA
if(sum(is.na(matAp)) == length(matAp) | length(unique(matAp)) == 1){
cat("WARNING: You have no variation in this variable, or all observations are missing in dataset A.\n")
}
if(sum(is.na(matBp)) == length(matBp) | length(unique(matBp)) == 1){
cat("WARNING: You have no variation in this variable, or all observations are missing in dataset B.\n")
}
if(is.null(n.cores)) {
n.cores <- detectCores() - 1
}
matrix.1 <- as.matrix(as.numeric(matAp))
matrix.2 <- as.matrix(as.numeric(matBp))
max <- max(max(matrix.1, na.rm = T), max(matrix.2, na.rm = T))
end.points <- c((round((max), 0) + 1), (round(max + cut.a, 0) + 3))
matrix.1[is.na(matrix.1)] <- end.points[2]
matrix.2[is.na(matrix.2)] <- end.points[1]
u.values.1 <- unique(matrix.1)
u.values.2 <- unique(matrix.2)
n.slices1 <- max(round(length(u.values.1)/(10000), 0), 1)
n.slices2 <- max(round(length(u.values.2)/(10000), 0), 1)
limit.1 <- round(quantile((0:nrow(u.values.2)), p = seq(0, 1, 1/n.slices2)), 0)
limit.2 <- round(quantile((0:nrow(u.values.1)), p = seq(0, 1, 1/n.slices1)), 0)
temp.1 <- temp.2 <- list()
n.cores2 <- min(n.cores, n.slices1 * n.slices2)
for(i in 1:n.slices2) {
temp.1[[i]] <- list(u.values.2[(limit.1[i]+1):limit.1[i+1]], limit.1[i])
}
for(i in 1:n.slices1) {
temp.2[[i]] <- list(u.values.1[(limit.2[i]+1):limit.2[i+1]], limit.2[i])
}
difference <- function(m, y, cut) {
x <- as.matrix(m[[1]])
e <- as.matrix(y[[1]])
t <- calcPWDcpp(as.matrix(x), as.matrix(e))
t[ t == 0 ] <- cut[1]
t[ t > cut ] <- 0
t <- Matrix(t, sparse = T)
if(is(t, "ddiMatrix")) {
t <- t * 2
} else {
t@x[t@x <= cut] <- 2
}
gc()
slice.1 <- m[[2]]
slice.2 <- y[[2]]
indexes.2 <- which(t == 2, arr.ind = T)
indexes.2[, 1] <- indexes.2[, 1] + slice.2
indexes.2[, 2] <- indexes.2[, 2] + slice.1
list(indexes.2)
}
do <- expand.grid(1:n.slices2, 1:n.slices1)
if (n.cores2 == 1) '%oper%' <- foreach::'%do%'
else {
'%oper%' <- foreach::'%dopar%'
cl <- makeCluster(n.cores2)
registerDoParallel(cl)
on.exit(stopCluster(cl))
}
temp.f <- foreach(i = 1:nrow(do), .packages = c("Rcpp", "Matrix")) %oper% {
r1 <- do[i, 1]
r2 <- do[i, 2]
difference(temp.1[[r1]], temp.2[[r2]], cut.a)
}
gc()
reshape2 <- function(s) { s[[1]] }
temp.2 <- lapply(temp.f, reshape2)
indexes.2 <- do.call('rbind', temp.2)
ht1 <- new.env(hash=TRUE)
ht2 <- new.env(hash=TRUE)
n.values.2 <- as.matrix(cbind(u.values.1[indexes.2[, 2]], u.values.2[indexes.2[, 1]]))
matches.2 <- lapply(seq_len(nrow(n.values.2)), function(i) n.values.2[i, ])
if(Sys.info()[['sysname']] == 'Windows') {
if (n.cores == 1) '%oper%' <- foreach::'%do%'
else {
'%oper%' <- foreach::'%dopar%'
cl <- makeCluster(n.cores)
registerDoParallel(cl)
on.exit(stopCluster(cl))
}
final.list2 <- foreach(i = 1:length(matches.2)) %oper% {
ht1 <- which(matrix.1 == matches.2[[i]][[1]]); ht2 <- which(matrix.2 == matches.2[[i]][[2]])
list(ht1, ht2)
}
} else {
no_cores <- n.cores
final.list2 <- mclapply(matches.2, function(s){
ht1 <- which(matrix.1 == s[1]); ht2 <- which(matrix.2 == s[2]);
list(ht1, ht2) }, mc.cores = getOption("mc.cores", no_cores))
}
na.list <- list()
na.list[[1]] <- which(matrix.1 == end.points[2])
na.list[[2]] <- which(matrix.2 == end.points[1])
out <- list()
out[["matches2"]] <- final.list2
out[["nas"]] <- na.list
class(out) <- c("fastLink", "gammaNUMCK2par")
return(out)
}
## ------------------------
## End of gammaNUMKpar
## ------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.