Nothing
new_directed_dcsbm <- function(
X, S, Y,
theta_out,
theta_in,
z_out,
z_in,
pi_out,
pi_in,
sorted,
...,
subclass = character()) {
subclass <- c(subclass, "directed_dcsbm")
dcsbm <- directed_factor_model(X, S, Y, ..., subclass = subclass)
dcsbm$theta_out <- theta_out
dcsbm$theta_in <- theta_in
dcsbm$z_out <- z_out
dcsbm$z_in <- z_in
dcsbm$pi_out <- pi_out
dcsbm$pi_in <- pi_in
dcsbm$sorted <- sorted
dcsbm
}
validate_directed_dcsbm <- function(x) {
values <- unclass(x)
if (!is.factor(values$z_out)) {
stop("`z_out` must be a factor.", call. = FALSE)
}
if (!is.factor(values$z_in)) {
stop("`z_in` must be a factor.", call. = FALSE)
}
if (length(levels(values$z_out)) != values$k1) {
stop(
"Number of levels of `z1` must match the incoming rank of the model.",
call. = FALSE
)
}
if (length(levels(values$z_in)) != values$k2) {
stop(
"Number of levels of `z_in` must match the outgoing rank of the model.",
call. = FALSE
)
}
if (length(values$z_out) != nrow(values$X)) {
stop("There must be one element of `z_out` for each row of `X`.")
}
if (length(values$z_in) != nrow(values$Y)) {
stop("There must be one element of `z_in` for each row of `Y`.")
}
if (!is.numeric(values$theta_out)) {
stop("`theta_out` must be a numeric.", call. = FALSE)
}
if (!is.numeric(values$theta_in)) {
stop("`theta_in` must be a numeric.", call. = FALSE)
}
if (any(values$theta_out < 0)) {
stop("Elements of `theta_out` must be strictly positive.", call. = FALSE)
}
if (any(values$theta_in < 0)) {
stop("Elements of `theta_in` must be strictly positive.", call. = FALSE)
}
if (length(values$theta_out) != nrow(values$X)) {
stop(
"There must be one element of `theta_out` for each row of `X`.",
call. = FALSE
)
}
if (length(values$theta_in) != nrow(values$Y)) {
stop(
"There must be one element of `theta_in` for each row of `Y`.",
call. = FALSE
)
}
if (length(values$theta_out) != nrow(values$X)) {
stop(
"There must be one element of `theta_out` for each row of `X`.",
call. = FALSE
)
}
if (length(values$theta_in) != nrow(values$Y)) {
stop(
"There must be one element of `theta_in` for each row of `Y`.",
call. = FALSE
)
}
if (length(values$pi_out) != values$k1) {
stop(
"Dimension of `pi_out` must match the incoming rank of the model.",
call. = FALSE
)
}
if (length(values$pi_in) != values$k2) {
stop(
"Dimension of `pi_in` must match the outgoing rank of the model.",
call. = FALSE
)
}
if (min(values$S) < 0) {
stop(
"All elements of `B` must be non-negative.",
call. = FALSE
)
}
x
}
#' Create a directed degree corrected stochastic blockmodel object
#'
#' To specify a degree-corrected stochastic blockmodel, you must specify
#' the degree-heterogeneity parameters (via `n` or `theta_out` and
#' `theta_in`), the mixing matrix
#' (via `k_out` and `k_in`, or `B`), and the relative block
#' probabilities (optional, via `p_out` and `pi_in`).
#' We provide defaults for most of these
#' options to enable rapid exploration, or you can invest the effort
#' for more control over the model parameters. We **strongly recommend**
#' setting the `expected_out_degree`, `expected_in_degree`,
#' or `expected_density` argument
#' to avoid large memory allocations associated with
#' sampling large, dense graphs.
#'
#' @param n (degree heterogeneity) The number of nodes in the blockmodel.
#' Use when you don't want to specify the degree-heterogeneity
#' parameters `theta_out` and `theta_in` by hand. When `n` is specified,
#' `theta_out` and `theta_in` are randomly generated from
#' a `LogNormal(2, 1)` distribution.
#' This is subject to change, and may not be reproducible.
#' `n` defaults to `NULL`. You must specify either `n`
#' or `theta_out` and `theta_in` together, but not both.
#'
#' @param theta_out (degree heterogeneity) A numeric vector
#' explicitly specifying the degree heterogeneity
#' parameters. This implicitly determines the number of nodes
#' in the resulting graph, i.e. it will have `length(theta_out)` nodes.
#' Must be positive. Setting to a vector of ones recovers
#' a stochastic blockmodel without degree correction.
#' Defaults to `NULL`. You must specify either `n`
#' or `theta_out` and `theta_in` together, but not both. `theta_out`
#' controls outgoing degree propensity, or, equivalently,
#' row sums of the adjacency matrix.
#'
#' @param theta_in (degree heterogeneity) A numeric vector
#' explicitly specifying the degree heterogeneity
#' parameters. This implicitly determines the number of nodes
#' in the resulting graph, i.e. it will have `length(theta)` nodes.
#' Must be positive. Setting to a vector of ones recovers
#' a stochastic blockmodel without degree correction.
#' Defaults to `NULL`. You must specify either `n`
#' or `theta_out` and `theta_in` together, but not both. `theta_in`
#' controls incoming degree propensity, or, equivalently, column
#' sums of the adjacency matrix.
#'
#' @param k_out (mixing matrix) The number of outgoing blocks in the blockmodel.
#' Use when you don't want to specify the mixing-matrix by hand.
#' When `k_out` is specified, the elements of `B` are drawn
#' randomly from a `Uniform(0, 1)` distribution.
#' This is subject to change, and may not be reproducible.
#' `k_out` defaults to `NULL`. You must specify either `k_out` and
#' `k_in` together, or `B`. You may specify all three at once, in which
#' case `k_out` is only used to set `pi_out` (when `pi_out` is
#' left at its default argument value).
#'
#' @param k_in (mixing matrix) The number of incoming blocks in the blockmodel.
#' Use when you don't want to specify the mixing-matrix by hand.
#' When `k_in` is specified, the elements of `B` are drawn
#' randomly from a `Uniform(0, 1)` distribution.
#' This is subject to change, and may not be reproducible.
#' `k_in` defaults to `NULL`. You may specify all three at once, in which
#' case `k_in` is only used to set `pi_in` (when `pi_in` is
#' left at its default argument value).
#'
#' @param B (mixing matrix) A `k_out` by `k_in` matrix of block connection
#' probabilities. The probability that a node in block `i` connects
#' to a node in community `j` is `Poisson(B[i, j])`.
#' `matrix` and `Matrix` objects are both acceptable.
#' Defaults to `NULL`. You must specify either `k_out` and
#' `k_in` together, or `B`, but not both.
#'
#' @param pi_out (relative block probabilities) Relative block
#' probabilities. Must be positive, but do not need to sum
#' to one, as they will be normalized internally.
#' Must match the rows of `B`, or `k_out`. Defaults to
#' `rep(1 / k_out, k_out)`, or a balanced outgoing blocks.
#'
#' @param pi_in (relative block probabilities) Relative block
#' probabilities. Must be positive, but do not need to sum
#' to one, as they will be normalized internally.
#' Must match the columns of `B`, or `k_in`. Defaults to
#' `rep(1 / k_in, k_in)`, or a balanced incoming blocks.
#'
#' @param sort_nodes Logical indicating whether or not to sort the nodes
#' so that they are grouped by block. Useful for plotting.
#' Defaults to `TRUE`. When `TRUE`, rows of the expected adjacency matrix
#' are first sorted by outgoing block membership, and then by
#' incoming degree-correction parameters within each incoming block.
#' A similar sorting procedure occurs independently from the columns,
#' according to the incoming blocks.
#' Additionally, `pi_out` and `pi_in` are sorted in increasing order,
#' and the columns of the `B` matrix are permuted to match the
#' new orderings.
#'
#' @param force_identifiability Logical indicating whether or not to
#' normalize `theta_out` such that it sums to one within each incoming
#' block and `theta_in` such that it sums to one within each outgoing
#' block. Defaults to `TRUE`.
#'
#' @inheritDotParams directed_factor_model expected_out_degree expected_density expected_in_degree
#' @inheritParams directed_factor_model
#'
#' @return A `directed_dcsbm` S3 object, a subclass of the
#' [directed_factor_model()] with the following additional
#' fields:
#'
#' - `theta_out`: A numeric vector of incoming community
#' degree-heterogeneity parameters.
#'
#' - `theta_in`: A numeric vector of outgoing community
#' degree-heterogeneity parameters.
#'
#' - `z_out`: The incoming community memberships of each node,
#' as a [factor()]. The factor will have `k_out` levels,
#' where `k_out` is the number of incoming
#' communities in the stochastic blockmodel. There will not
#' always necessarily be observed nodes in each community.
#'
#' - `z_in`: The outgoing community memberships of each node,
#' as a [factor()]. The factor will have `k_in` levels,
#' where `k_in` is the number of outgoing
#' communities in the stochastic blockmodel. There will not
#' always necessarily be observed nodes in each community.
#'
#' - `pi_out`: Sampling probabilities for each incoming
#' community.
#'
#' - `pi_in`: Sampling probabilities for each outgoing
#' community.
#'
#' - `sorted`: Logical indicating where nodes are arranged by
#' block (and additionally by degree heterogeneity parameter)
#' within each block.
#'
#' @export
#' @family stochastic block models
#' @family directed graphs
#'
#' @details
#'
#' # Generative Model
#'
#' There are two levels of randomness in a directed degree-corrected
#' stochastic blockmodel. First, we randomly chose a incoming
#' block membership and an outgoing block membership
#' for each node in the blockmodel. This is
#' handled by `directed_dcsbm()`. Then, given these block memberships,
#' we randomly sample edges between nodes. This second
#' operation is handled by [sample_edgelist()],
#' [sample_sparse()], [sample_igraph()] and
#' [sample_tidygraph()], depending on your desired
#' graph representation.
#'
#' ## Block memberships
#'
#' Let \eqn{x} represent the incoming block membership of a node
#' and \eqn{y} represent the outgoing block membership of a node.
#' To generate \eqn{x} we sample from a categorical
#' distribution with parameter \eqn{\pi_out}.
#' To generate \eqn{y} we sample from a categorical
#' distribution with parameter \eqn{\pi_in}.
#' Block memberships are independent across nodes. Incoming and outgoing
#' block memberships of the same node are also independent.
#'
#' ## Degree heterogeneity
#'
#' In addition to block membership, the DCSBM also
#' nodes to have different propensities for incoming and
#' outgoing edge formation.
#' We represent the propensity to form incoming edges for a
#' given node by a positive number \eqn{\theta_out}.
#' We represent the propensity to form outgoing edges for a
#' given node by a positive number \eqn{\theta_in}.
#' Typically the \eqn{\theta_out} (and \eqn{theta_in}) across all nodes are
#' constrained to sum to one for identifiability purposes,
#' but this doesn't really matter during sampling.
#'
#' ## Edge formulation
#'
#' Once we know the block memberships \eqn{x} and \eqn{y}
#' and the degree heterogeneity parameters \eqn{\theta_{in}} and
#' \eqn{\theta_{out}}, we need one more
#' ingredient, which is the baseline intensity of connections
#' between nodes in block `i` and block `j`. Then each edge forms
#' independently according to a Poisson distribution with
#' parameters
#'
#' \deqn{
#' \lambda = \theta_{in} * B_{x, y} * \theta_{out}.
#' }
#'
#' @examples
#'
#' set.seed(27)
#'
#' B <- matrix(0.2, nrow = 5, ncol = 8)
#' diag(B) <- 0.9
#'
#' ddcsbm <- directed_dcsbm(
#' n = 1000,
#' B = B,
#' k_out = 5,
#' k_in = 8,
#' expected_density = 0.01
#' )
#'
#' ddcsbm
#'
#' population_svd <- svds(ddcsbm)
#'
directed_dcsbm <- function(
n = NULL,
theta_out = NULL, theta_in = NULL,
k_out = NULL, k_in = NULL, B = NULL,
...,
pi_out = rep(1 / k_out, k_out),
pi_in = rep(1 / k_in, k_in),
sort_nodes = TRUE,
force_identifiability = TRUE,
poisson_edges = TRUE,
allow_self_loops = TRUE) {
# NOTE:
# - X corresponds to outgoing communities, outgoing edges and rows of A
# - Y corresponds to incoming communities, incoming edges and columns of A
### heterogeneity parameters
if (is.null(n) && (is.null(theta_out) || is.null(theta_in))) {
stop(
"Must specify either `n` or both `theta_out` and `theta_in` together.",
call. = FALSE
)
} else if (!is.null(n) && !is.null(theta_out) && !is.null(theta_in)) {
stop(
"Must specify either `n`, or both `theta_out` and `theta_in` together,",
" but not all three at once.",
call. = FALSE
)
} else if (is.null(theta_out) && is.null(theta_in)) {
if (n < 1) {
stop("`n` must be a positive integer.", call. = FALSE)
}
message(
"Generating random degree heterogeneity parameters `theta_out` and `theta_in` from ",
"LogNormal(2, 1) distributions. This distribution may change ",
"in the future. Explicitly set `theta_out` and `theta_in` for reproducible results.\n"
)
theta_out <- stats::rlnorm(n, meanlog = 2, sdlog = 1)
theta_in <- stats::rlnorm(n, meanlog = 2, sdlog = 1)
} else if (is.null(n)) {
if (length(theta_out) != length(theta_in)) {
stop(
"Length of `theta_out` must match length of `theta_in`.",
call. = FALSE
)
}
n <- length(theta_out)
}
### mixing matrix
if (is.null(B) && (is.null(k_out) || is.null(k_in))) {
stop(
"Must specify either `k_out` and `k_in` together, or `B`.",
call. = FALSE
)
} else if (is.null(B)) {
if (k_out < 1) {
stop("`k_out` must be a positive integer.", call. = FALSE)
}
if (k_in < 1) {
stop("`k_in` must be a positive integer.", call. = FALSE)
}
message(
"Generating random mixing matrix `B` with independent ",
"Uniform(0, 1) entries. This distribution may change ",
"in the future. Explicitly set `B` for reproducible results."
)
B <- Matrix(data = stats::runif(k_out * k_in), nrow = k_out, ncol = k_in)
} else if (!is.null(B)) {
k_out <- nrow(B)
k_in <- ncol(B)
}
### block membership
if (length(pi_out) != nrow(B)) {
stop("Length of `pi_out` must match number of rows in `B`.", call. = FALSE)
}
if (length(pi_in) != ncol(B)) {
stop(
"Length of `pi_in` must match number of columns in `B`.",
call. = FALSE
)
}
if (any(pi_out < 0)) {
stop("All elements of `pi_out` must be >= 0.", call. = FALSE)
}
if (any(pi_in < 0)) {
stop("All elements of `pi_in` must be >= 0.", call. = FALSE)
}
# order mixing matrix by expected group size
if (k_out > 1 && sort_nodes) {
B <- B[order(pi_out), ]
pi_out <- sort(pi_out)
}
if (k_in > 1 && sort_nodes) {
B <- B[, order(pi_in)]
pi_in <- sort(pi_in)
}
pi_out <- pi_out / sum(pi_out)
pi_in <- pi_in / sum(pi_in)
# sample block memberships
z_out <- sample(k_out, n, replace = TRUE, prob = pi_out)
z_out <- factor(z_out, levels = 1:k_out, labels = paste0(1:k_out))
z_in <- sample(k_in, n, replace = TRUE, prob = pi_in)
z_in <- factor(z_in, levels = 1:k_in, labels = paste0(1:k_in))
if (sort_nodes) {
z_out <- sort(z_out)
z_in <- sort(z_in)
}
if (k_out > 1) {
X <- sparse.model.matrix(~z_out + 0)
} else {
X <- Matrix(1, nrow = n, ncol = 1)
}
if (k_in > 1) {
Y <- sparse.model.matrix(~z_in + 0)
} else {
Y <- Matrix(1, nrow = n, ncol = 1)
}
if (force_identifiability) {
theta_out <- l1_normalize_within(theta_out, z_out)
theta_in <- l1_normalize_within(theta_in, z_in)
}
X@x <- theta_out
Y@x <- theta_in
if (sort_nodes) {
# X, Y indexing must match z indexing, be careful about this
X <- sort_by_all_columns(X)
Y <- sort_by_all_columns(Y)
if (k_out > 1) {
theta_out <- X@x
} else {
theta_out <- sort(theta_out, decreasing = TRUE)
}
if (k_in > 1) {
theta_in <- Y@x
} else {
theta_in <- sort(theta_in, decreasing = TRUE)
}
}
dcsbm <- new_directed_dcsbm(
X = X,
S = B,
Y = Y,
theta_out = theta_out,
theta_in = theta_in,
z_out = z_out,
z_in = z_in,
pi_out = pi_out,
pi_in = pi_in,
sorted = sort_nodes,
poisson_edges = poisson_edges,
allow_self_loops = allow_self_loops,
...
)
validate_directed_dcsbm(dcsbm)
}
#' @method print directed_dcsbm
#' @export
print.directed_dcsbm <- function(x, ...) {
cat(glue("Directed Degree-Corrected Stochastic Blockmodel\n", .trim = FALSE))
cat(glue("-----------------------------------------------\n\n", .trim = FALSE))
sorted <- if (x$sorted) "arranged by block" else "not arranged by block"
cat(glue("Nodes (n): {x$n} ({sorted})\n", .trim = FALSE))
cat(glue("Incoming Blocks (k_out): {x$k1}\n", .trim = FALSE))
cat(glue("Outgoing Blocks (k_in): {x$k2}\n\n", .trim = FALSE))
cat("Traditional DCSBM parameterization:\n\n")
cat("Block memberships (z_out):", dim_and_class(x$z_out), "\n")
cat("Block memberships (z_in):", dim_and_class(x$z_in), "\n")
cat("Degree heterogeneity (theta_out):", dim_and_class(x$theta_out), "\n")
cat("Degree heterogeneity (theta_in):", dim_and_class(x$theta_in), "\n")
cat("Block probabilities (pi_out):", dim_and_class(x$pi_out), "\n")
cat("Block probabilities (pi_in):", dim_and_class(x$pi_in), "\n\n")
cat("Factor model parameterization:\n\n")
cat("X:", dim_and_class(x$X), "\n")
cat("S:", dim_and_class(x$S), "\n")
cat("Y:", dim_and_class(x$Y), "\n\n")
cat("Poisson edges:", as.character(x$poisson_edges), "\n")
cat("Allow self loops:", as.character(x$allow_self_loops), "\n\n")
cat(glue("Expected edges: {round(expected_edges(x))}\n", .trim = FALSE))
cat(glue("Expected in degree: {round(expected_out_degree(x), 1)}\n", .trim = FALSE))
cat(glue("Expected out degree: {round(expected_in_degree(x), 1)}\n", .trim = FALSE))
cat(glue("Expected density: {round(expected_density(x), 5)}\n", .trim = FALSE))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.