GANLearner_wgan | R Documentation |
Create a WGAN from 'data', 'generator' and 'critic'.
GANLearner_wgan(
dls,
generator,
critic,
switcher = NULL,
clip = 0.01,
switch_eval = FALSE,
gen_first = FALSE,
show_img = TRUE,
cbs = NULL,
metrics = NULL,
opt_func = Adam(),
lr = 0.001,
splitter = trainable_params,
path = NULL,
model_dir = "models",
wd = NULL,
wd_bn_bias = FALSE,
train_bn = TRUE,
moms = list(0.95, 0.85, 0.95)
)
dls |
dataloader |
generator |
generator |
critic |
critic |
switcher |
switcher |
clip |
clip value |
switch_eval |
switch evaluation |
gen_first |
generator first |
show_img |
show image or not |
cbs |
callbacks |
metrics |
metrics |
opt_func |
optimization function |
lr |
learning rate |
splitter |
splitter |
path |
path |
model_dir |
model directory |
wd |
weight decay |
wd_bn_bias |
weight decay bn bias |
train_bn |
It controls if BatchNorm layers are trained even when they are supposed to be frozen according to the splitter. |
moms |
momentums |
None
## Not run:
learn = GANLearner_wgan(dls, generator, critic, opt_func = partial(Adam(), mom=0.))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.