| create_unet_model | R Documentation | 
Create custom unet architecture
create_unet_model(
  arch,
  n_out,
  img_size,
  pretrained = TRUE,
  cut = NULL,
  n_in = 3,
  blur = FALSE,
  blur_final = TRUE,
  self_attention = FALSE,
  y_range = NULL,
  last_cross = TRUE,
  bottle = FALSE,
  act_cls = nn()$ReLU,
  init = nn()$init$kaiming_normal_,
  norm_type = NULL
)
| arch | architecture | 
| n_out | number of out features | 
| img_size | imgage shape | 
| pretrained | pretrained or not | 
| cut | cut | 
| n_in | number of input | 
| blur | blur is used to avoid checkerboard artifacts at each layer. | 
| blur_final | blur final is specific to the last layer. | 
| self_attention | self_attention determines if we use a self attention layer at the third block before the end. | 
| y_range | If y_range is passed, the last activations go through a sigmoid rescaled to that range. | 
| last_cross | last_cross | 
| bottle | bottle | 
| act_cls | activation | 
| init | initialzier | 
| norm_type | normalization type | 
None
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.