Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, eval = FALSE)
## -----------------------------------------------------------------------------
# library(fastai)
# library(magrittr)
# library(zeallot)
# df = HF_load_dataset('civil_comments', split='train[:1%]')
## -----------------------------------------------------------------------------
# df = data.table::as.data.table(df)
#
# lbl_cols = c('severe_toxicity',
# 'obscene',
# 'threat',
# 'insult',
# 'identity_attack',
# 'sexual_explicit')
#
# df <- df[,(lbl_cols) := round(.SD,0), .SDcols=lbl_cols]
# df <- df[, (lbl_cols) := lapply(.SD, as.integer), .SDcols=lbl_cols]
## -----------------------------------------------------------------------------
# task = HF_TASKS_ALL()$SequenceClassification
#
# pretrained_model_name = "distilroberta-base"
# config = AutoConfig()$from_pretrained(pretrained_model_name)
# config$num_labels = length(lbl_cols)
#
# c(hf_arch, hf_config, hf_tokenizer, hf_model) %<-% get_hf_objects(pretrained_model_name,
# task=task,
# config=config)
## -----------------------------------------------------------------------------
# blocks = list(
# HF_TextBlock(hf_arch=hf_arch, hf_tokenizer=hf_tokenizer),
# MultiCategoryBlock(encoded=TRUE, vocab=lbl_cols)
# )
#
# dblock = DataBlock(blocks=blocks,
# get_x=ColReader('text'), get_y=ColReader(lbl_cols),
# splitter=RandomSplitter())
#
# dls = dblock %>% dataloaders(df, bs=8)
#
# dls %>% one_batch()
## -----------------------------------------------------------------------------
# model = HF_BaseModelWrapper(hf_model)
#
# learn = Learner(dls,
# model,
# opt_func=partial(Adam),
# loss_func=BCEWithLogitsLossFlat(),
# metrics=partial(accuracy_multi(), thresh=0.2),
# cbs=HF_BaseModelCallback(),
# splitter=hf_splitter())
#
# learn$loss_func$thresh = 0.2
# learn$create_opt() # -> will create your layer groups based on your "splitter" function
# learn$freeze()
#
# learn %>% summary()
## -----------------------------------------------------------------------------
# lrs = learn %>% lr_find(suggestions=TRUE)
#
# learn %>% fit_one_cycle(1, lr_max=1e-2)
## -----------------------------------------------------------------------------
# learn$loss_func$thresh = 0.02
#
# learn %>% predict("Those damned affluent white people should only eat their own food, like cod cakes and boiled potatoes.
# No enchiladas for them!")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.