Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, eval = FALSE)
## -----------------------------------------------------------------------------
# reticulate::py_install('ohmeow-blurr',pip = TRUE)
## -----------------------------------------------------------------------------
# library(fastai)
# library(magrittr)
# library(zeallot)
# URLs_IMDB_SAMPLE()
## -----------------------------------------------------------------------------
# HF_TASKS_AUTO = HF_TASKS_AUTO()
# task = HF_TASKS_AUTO$SequenceClassification
#
# pretrained_model_name = "roberta-base" # "distilbert-base-uncased" "bert-base-uncased"
# c(hf_arch, hf_config, hf_tokenizer, hf_model) %<-% get_hf_objects(pretrained_model_name, task=task)
## -----------------------------------------------------------------------------
# imdb_df = data.table::fread('imdb_sample/texts.csv')
#
# blocks = list(HF_TextBlock(hf_arch=hf_arch, hf_tokenizer=hf_tokenizer), CategoryBlock())
#
# dblock = DataBlock(blocks=blocks,
# get_x=ColReader('text'),
# get_y=ColReader('label'),
# splitter=ColSplitter(col='is_valid'))
#
# dls = dblock %>% dataloaders(imdb_df, bs=4)
# dls %>% one_batch()
## -----------------------------------------------------------------------------
# model = HF_BaseModelWrapper(hf_model)
#
# learn = Learner(dls,
# model,
# opt_func=partial(Adam, decouple_wd=TRUE),
# loss_func=CrossEntropyLossFlat(),
# metrics=accuracy,
# cbs=HF_BaseModelCallback(),
# splitter=hf_splitter())
#
# learn$create_opt()
# learn$freeze()
#
# learn %>% summary()
## -----------------------------------------------------------------------------
# result = learn %>% fit_one_cycle(3, lr_max=1e-3)
#
# learn %>% predict(imdb_df$text[1:4])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.