fda.usc: Functional Data Analysis and Utilities for Statistical Computing

Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

Install the latest version of this package by entering the following in R:
AuthorManuel Febrero Bande [aut], Manuel Oviedo de la Fuente [aut, cre], Pedro Galeano [ctb], Alicia Nieto [ctb], Eduardo Garcia-Portugues [ctb]
Date of publication2016-11-14 12:33:41
MaintainerManuel Oviedo de la Fuente <manuel.oviedo@usc.es>

View on CRAN

Man pages

aemet: aemet data

anova.hetero: ANOVA for heteroscedastic data

anova.onefactor: One-way anova model for functional data

anova.RPm: Functional ANOVA with Random Project.

classif.DD: DD-Classifier Based on DD-plot

classif.depth: Classifier from Functional Data

classif.gkam: Classification Fitting Functional Generalized Kernel Additive...

classif.glm: Classification Fitting Functional Generalized Linear Models

classif.gsam: Classification Fitting Functional Generalized Additive Models

classif.np: Kernel Classifier from Functional Data

classif.tree: Classification Fitting Functional Recursive Partitioning and...

cond.F: Conditional Distribution Function

cond.mode: Conditional mode

cond.quantile: Conditional quantile

create.fdata.basis: Create Basis Set for Functional Data of fdata class

CV.S: The cross-validation (CV) score

DepthFunctional: Provides the depth measure for functional data

DepthFunctionalIntegrate: Provides the depth measure for a list of p-functional data...

DepthMultivariate: Provides the depth measure for multivariate data

Descriptive: Descriptive measures for functional data.

dev.S: The deviance score .

dfv.test: Delsol, Ferraty and Vieu test for no functional-scalar...

dis.cos.cor: Proximities between functional data

fdata: Converts raw data or other functional data classes into fdata...

fdata2fd: Converts fdata class object into fd class object

fdata2pc: Principal components for functional data

fdata2pls: Partial least squares components for functional data.

fdata.bootstrap: Bootstrap samples of a functional statistic

fdata.cen: Functional data centred (subtract the mean of each...

fdata.deriv: Computes the derivative of functional data object.

fdata.methods: fdata S3 Group Generic Functions

fda.usc.internal: fda.usc internal functions

fda.usc-package: Functional Data Analysis and Utilities for Statistical...

FDR: False Discorvery Rate (FDR)

flm.Ftest: F-test for the Functional Linear Model with scalar response

flm.test: Goodness-of-fit test for the Functional Linear Model with...

fregre.basis: Functional Regression with scalar response using basis...

fregre.basis.cv: Cross-validation Functional Regression with scalar response...

fregre.basis.fr: Functional Regression with functional response using basis...

fregre.bootstrap: Bootstrap regression

fregre.gkam: Fitting Functional Generalized Kernel Additive Models.

fregre.glm: Fitting Functional Generalized Linear Models

fregre.gls: Fit Functional Linear Model Using Generalized Least Squares

fregre.gsam: Fitting Functional Generalized Spectral Additive Models

fregre.igls: Fit of Functional Generalized Least Squares Model Iteratively

fregre.lm: Fitting Functional Linear Models

fregre.np: Functional regression with scalar response using...

fregre.np.cv: Cross-validation functional regression with scalar response...

fregre.pc: Functional Regression with scalar response using Principal...

fregre.pc.cv: Functional penalized PC regression with scalar response using...

fregre.plm: Semi-functional partially linear model with scalar response.

fregre.pls: Functional Penalized PLS regression with scalar response

fregre.pls.cv: Functional penalized PLS regression with scalar response...

fregre.ppls: Functional Penalized PC (or PLS) regression with scalar...

fregre.ppls.cv: Functional penalized PC (or PLS) regression with scalar...

GCCV.S: The generalized correlated cross-validation (GCCV) score.

GCV.S: The generalized cross-validation (GCV) score.

gridfdata: Utils for generate functional data

h.default: Calculation of the smoothing parameter (h) for a functional...

influence.fdata: Functional influence measures

influence.quan: Quantile for influence measures

inprod.fdata: Inner products of Functional Data Objects o class (fdata)

int.simpson: Simpson integration

Kernel: Symmetric Smoothing Kernels.

Kernel.asymmetric: Asymmetric Smoothing Kernel

Kernel.integrate: Integrate Smoothing Kernels.

kmeans.fd: K-Means Clustering for functional data

MCO: Mithochondiral calcium overload (MCO) data set

metric.dist: Distance Matrix Computation

metric.hausdorff: Compute the Hausdorff distances between two curves.

metric.kl: Kullback-Leibler distance

metric.lp: Aproximates Lp-metric distances for functional data.

min.basis: Select the number of basis using GCV method.

min.np: Smoothing of functional data using nonparametric kernel...

norm.fdata: Aproximates Lp-norm for functional data.

order.fdata: A wrapper for the 'order' function

Outliers.fdata: Detecting outliers for functional dataset

PCvM.statistic: PCvM statistic for the Functional Linear Model with scalar...

phoneme: phoneme data

plot.fdata: Plot functional data: fdata.

poblenou: poblenou data

P.penalty: Penalty matrix for higher order differences

predict.classif: Predicts from a fitted classif object.

predict.classif.DD: Predicts from a fitted classif.DD object.

predict.fregre.fd: Predict method for functional linear model (fregre.fd class)

predict.fregre.functional: Predict method for functional response model

predict.fregre.gls: Predictions from a functional gls object

predict.fregre.scalar: Predict method for functional regression model

rp.flm.statistic: Statistic for testing the FLM using random projections

rp.flm.test: Goodness-of-fit test for the Functional Linear Model with...

rproc2fdata: Simulate several random processes.

rwild: Wild bootstrap residuals

S.basis: Smoothing matrix with roughness penalties by basis...

semimetric.basis: Proximities between functional data

semimetric.NPFDA: Proximities between functional data (semi-metrics)

S.np: Smoothing matrix by nonparametric methods.

split_omit.fdata: A wrapper for the split and unlist function for fdata object

subset.fdata: Subsetting

summary.classif: Summarizes information from kernel classification methods.

summary.fdata.comp: Correlation for functional data by Principal Component...

summary.fregre.fd: Summarizes information from fregre.fd objects.

summary.fregre.gkam: Summarizes information from fregre.gkam objects.

tecator: tecator data

Var.y: Sampling Variance estimates


Adot Man page
aemet Man page
AKer.cos Man page
AKer.epa Man page
AKer.norm Man page
AKer.quar Man page
AKer.tri Man page
AKer.unif Man page
anova.hetero Man page
anova.onefactor Man page
anova.RPm Man page
anova.RPm.boot Man page
anyNA.fdata Man page
argvals Man page
c.fdata Man page
classif.DD Man page
classif.depth Man page
classif.gkam Man page
classif.glm Man page
classif.gsam Man page
classif.kernel Man page
classif.knn Man page
classif.np Man page
classif.tree Man page
cond.F Man page
cond.mode Man page
cond.quantile Man page
count.na.fdata Man page
create.fdata.basis Man page
create.pc.basis Man page
create.pls.basis Man page
create.raw.fdata Man page
CV.S Man page
Depth Man page
depth.FM Man page
depth.FMp Man page
depth.FSD Man page
depth.KFSD Man page
depth.mode Man page
depth.modep Man page
Depth.Multivariate Man page
Depth.pfdata Man page
depth.RP Man page
depth.RPD Man page
depth.RPp Man page
depth.RT Man page
Descriptive Man page
dev.S Man page
dfv.statistic Man page
dfv.test Man page
dim.fdata Man page
dis.cos.cor Man page
fdata Man page
^.fdata Man page
==.fdata Man page
-.fdata Man page
!=.fdata Man page
/.fdata Man page
[.fdata Man page
*.fdata Man page
+.fdata Man page
fdata2fd Man page
fdata2pc Man page
fdata2pls Man page
fdata2ppc Man page
fdata2ppls Man page
fdata.bootstrap Man page
fdata.cen Man page
fdata.deriv Man page
fda.usc Man page
fda.usc-package Man page
[.fdist Man page
FDR Man page
flm.Ftest Man page
flm.test Man page
fregre.basis Man page
fregre.basis.cv Man page
fregre.basis.fr Man page
fregre.bootstrap Man page
fregre.gkam Man page
fregre.glm Man page
fregre.gls Man page
fregre.gsam Man page
fregre.igls Man page
fregre.lm Man page
fregre.np Man page
fregre.np.cv Man page
fregre.pc Man page
fregre.pc.cv Man page
fregre.plm Man page
fregre.pls Man page
fregre.pls.cv Man page
fregre.ppc Man page
fregre.ppc.cv Man page
fregre.ppls Man page
fregre.ppls.cv Man page
Ftest.statistic Man page
func.mean Man page
func.mean.formula Man page
func.med.FM Man page
func.med.mode Man page
func.med.RP Man page
func.med.RPD Man page
func.med.RT Man page
func.trim.FM Man page
func.trim.mode Man page
func.trim.RP Man page
func.trim.RPD Man page
func.trim.RT Man page
func.trimvar.FM Man page
func.trimvar.mode Man page
func.trimvar.RP Man page
func.trimvar.RPD Man page
func.trimvar.RT Man page
func.var Man page
GCCV.S Man page
GCV.S Man page
gridfdata Man page
h.default Man page
hshift Man page
IKer.cos Man page
IKer.epa Man page
IKer.norm Man page
IKer.quar Man page
IKer.tri Man page
IKer.unif Man page
influence.fdata Man page
influence.quan Man page
inprod.fdata Man page
intercambio Man page
intercambio.l Man page
int.simpson Man page
int.simpson2 Man page
is.fdata Man page
is.na.fdata Man page
Ker.cos Man page
Ker.epa Man page
Kernel Man page
Kernel.asymmetric Man page
Kernel.integrate Man page
Ker.norm Man page
Ker.quar Man page
Ker.tri Man page
Ker.unif Man page
kgam.H Man page
kmeans.assig.groups Man page
kmeans.center.ini Man page
kmeans.centers.update Man page
kmeans.fd Man page
length.fdata Man page
lines.fdata Man page
Math.fdata Man page
MCO Man page
mdepth.HS Man page
mdepth.LD Man page
mdepth.MB Man page
mdepth.MhD Man page
mdepth.RP Man page
mdepth.SD Man page
mdepth.TD Man page
metric.dist Man page
metric.hausdorff Man page
metric.kl Man page
metric.lp Man page
min.basis Man page
min.np Man page
missing.fdata Man page
mplsr Man page
ncol.fdata Man page
NCOL.fdata Man page
norm.fd Man page
norm.fdata Man page
nrow.fdata Man page
NROW.fdata Man page
omit2.fdata Man page
omit.fdata Man page
Ops.fdata Man page
order.fdata Man page
outliers.depth.pond Man page
outliers.depth.trim Man page
Outliers.fdata Man page
outliers.lrt Man page
outliers.thres.lrt Man page
PCvM.statistic Man page
phoneme Man page
plot.bifd Man page
plot.fdata Man page
poblenou Man page
P.penalty Man page
predict.classif Man page
predict.classif.DD Man page
predict.fregre.fd Man page
predict.fregre.fr Man page
predict.fregre.gkam Man page
predict.fregre.gkam.func Man page
predict.fregre.glm Man page
predict.fregre.glm.func Man page
predict.fregre.gls Man page
predict.fregre.gsam Man page
predict.fregre.gsam.func Man page
predict.fregre.igls Man page
predict.fregre.lm Man page
predict.fregre.lm.func Man page
predict.fregre.plm Man page
print.classif Man page
print.fregre.fd Man page
print.fregre.gkam Man page
pvalue.FDR Man page
quantile.outliers.pond Man page
quantile.outliers.trim Man page
rangeval Man page
rcombfdata Man page
rkernel Man page
rp.flm.statistic Man page
rp.flm.test Man page
rproc2fdata Man page
rwild Man page
S.basis Man page
semimetric.basis Man page
semimetric.deriv Man page
semimetric.fourier Man page
semimetric.hshift Man page
semimetric.mplsr Man page
semimetric.NPFDA Man page
semimetric.pca Man page
S.KNN Man page
S.LLR Man page
S.np Man page
S.NW Man page
split.fdata Man page
subset.fdata Man page
summary.anova Man page
summary.classif Man page
Summary.fdata Man page
summary.fdata.comp Man page
summary.fregre.fd Man page
summary.fregre.gkam Man page
tecator Man page
title.fdata Man page
unlist.fdata Man page
Var.e Man page
Var.y Man page


inst/script/jss757.R inst/script/flm_beta_estimation_brownian_data.R inst/script/Outliers_fdata.R
R/predict.fregre.gkam.R R/rp.flm.test2.R R/cond.quantile.R R/func.mean.formula.r R/influence.fdata.R R/fregre.plm.R R/fregre.igls.r R/is.fdata.R R/print.fregre.fd.r R/fregre.gls.r R/fregre.basis.cv.R R/anova.hetero.R R/metric.kl.r R/fdata.deriv.R R/depth.RPD.r R/depth.FM.r R/predict.fregre.glm.R R/fdata.bootstrap.r R/Descriptive.R R/corStruct.R R/fregre.lm.r R/split.fdata.r R/predict.fregre.igls.r R/CV.S.R R/min.basis.R R/fregre.gsam.R R/S.basis.R R/semimetric.basis.R R/S.KNN.R R/metric.hausdorff.R R/par.fda.usc.r R/semimetric.NPFDA.r R/dev.S.R R/print.classif.r R/kmeans.fd.R R/depth.RPp.r R/fregre.basis.fr.r R/omit.fdata.R R/plot.fdata.R R/anova.onefactor.R R/rproc2fdata.R R/fregre.np.r R/predict.gls.nlme.r R/flm.test.R R/kmeans.center.ini.R R/depth.RP.r R/metric.dist.R R/depth.mode.r R/dis.cos.cor.R R/depth.SD.R R/anova.RPm.boot.R R/fdata.R R/GCV.S.R R/dcor.fdist.r R/outliers.depth.trim.r R/fdata.methods.R R/norm.fdata.r R/plot.lfdata.R R/summary.classif.R R/classif.gkam.R R/FDR.R R/depth.RT.r R/create.fdata.basis.R R/predict.fregre.fd.r R/classif.glm.R R/S.LLR.R R/Var.y.R R/metric.lp.R R/predict.fregre.gsam.R R/inprod.fdata.R R/fregre.gkam.r R/outliers.depth.pond.r R/Kernel.asymmetric.R R/classif.DD.r R/predict.fregre.fr.r R/depth.multivariate.R R/fdata2fd.R R/kernels.R R/traza.R R/fregre.bootstrap.r R/classif.depth.R R/kmeans.assig.groups.R R/corSigma.R R/predict.classif.npp.R R/predict.fregre.gls.r R/predict.classif.R R/classif.np.r R/h.default.R R/fregre.PPC.PPLSdeprecated.R R/classif.univariate.R R/influence.quan.R R/quantile.outliers.trim.r R/depth.band.r R/fdata.cen.R R/cond.mode.R R/depth.KFSD.R R/anova.RPm.R R/outliers.lrt.r R/outliers.thres.lrt.r R/summary.anova.R R/subset.lfdata.R R/auxiliar.R R/classif.tree.R R/Kernel.R R/flm.Ftest.R R/kmeans.centers.update.R R/fregre.np.cv.r R/cond.F.R R/dcor.fdist2.r R/fregre.glm.R R/predict.classif.DD.R R/GCCV.S.R R/predict.fregre.plm.R R/min.np.r R/summary.fregre.fd.r R/summary.fdata.comp.r R/PPC.PPLS.R R/classif.DD.aux.r R/order.fdata.r R/plot.bifd.R R/classif.np.ldata.R R/predict.fregre.lm.R R/classif.gsam.R R/int.simpson.R R/fda.usc.internal.R R/na.omit.fdata.R R/S.NW.R R/fregre.PPC.PPLS.R R/quantile.outliers.pond.r R/Ginv.R R/Var.e.r R/fregre.basis.R R/dfv.test.R
man/anova.RPm.Rd man/fregre.pls.Rd man/metric.dist.Rd man/dis.cos.cor.Rd man/metric.hausdorff.Rd man/Kernel.asymmetric.Rd man/summary.fdata.comp.Rd man/fda.usc.internal.Rd man/fregre.gls.Rd man/fregre.gsam.Rd man/dfv.test.Rd man/predict.fregre.functional.Rd man/S.np.Rd man/fregre.igls.Rd man/summary.fregre.fd.Rd man/predict.fregre.scalar.Rd
man/cond.quantile.Rd man/FDR.Rd man/fdata2pc.Rd man/Var.y.Rd man/fregre.ppls.Rd man/predict.classif.Rd man/tecator.Rd man/fregre.pc.Rd man/min.np.Rd man/classif.tree.Rd man/fregre.gkam.Rd man/fdata.cen.Rd man/Kernel.integrate.Rd man/rp.flm.test.Rd man/Descriptive.Rd man/CV.S.Rd man/DepthMultivariate.Rd man/semimetric.NPFDA.Rd man/anova.hetero.Rd man/DepthFunctional.Rd man/dev.S.Rd man/influence.quan.Rd
man/classif.glm.Rd man/cond.mode.Rd man/fdata2fd.Rd man/metric.lp.Rd man/classif.np.Rd man/split_omit.fdata.Rd man/int.simpson.Rd man/flm.test.Rd man/influence.fdata.Rd man/cond.F.Rd man/h.default.Rd man/fdata.methods.Rd man/order.fdata.Rd man/fdata2pls.Rd man/fregre.bootstrap.Rd man/create.fdata.basis.Rd man/fregre.np.Rd man/fregre.basis.Rd man/classif.DD.Rd man/PCvM.statistic.Rd man/predict.classif.DD.Rd man/kmeans.fd.Rd man/summary.fregre.gkam.Rd man/fregre.pc.cv.Rd man/Outliers.fdata.Rd man/flm.Ftest.Rd man/fdata.bootstrap.Rd man/aemet.Rd man/min.basis.Rd man/fdata.deriv.Rd man/predict.fregre.gls.Rd man/fregre.basis.fr.Rd man/fregre.basis.cv.Rd man/gridfdata.Rd man/MCO.Rd man/classif.gkam.Rd man/fregre.plm.Rd man/GCCV.S.Rd man/subset.fdata.Rd man/rwild.Rd man/Kernel.Rd man/S.basis.Rd man/anova.onefactor.Rd man/plot.fdata.Rd man/P.penalty.Rd man/fda.usc-package.Rd man/poblenou.Rd man/norm.fdata.Rd man/summary.classif.Rd man/fdata.Rd man/rproc2fdata.Rd man/GCV.S.Rd man/metric.kl.Rd man/classif.depth.Rd man/rp.flm.statistic.Rd man/semimetric.basis.Rd man/phoneme.Rd man/fregre.glm.Rd man/fregre.lm.Rd man/predict.fregre.fd.Rd man/fregre.np.cv.Rd man/classif.gsam.Rd man/fregre.ppls.cv.Rd man/fregre.pls.cv.Rd man/DepthFunctionalIntegrate.Rd man/inprod.fdata.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.